Under the Hood of Bike-sharing

Shane Henderson
Cornell University

Based on joint work with
David Shmoys
Daniel Freund
Nanjing Jian
Eoin O'Mahony

And Hangil Chung, Ashkan Norouzi Fard, Aaron Ferber,
Alice Paul, Holly Wiberg, & David Williamson

Supported in part by grants from the National Science Foundation
Background on Motivate & Citi Bike

- Motivate operates systems in NYC, Chicago, Boston, Bay Area, Washington...
- Across systems, more than 100M rides since 2010

<table>
<thead>
<tr>
<th>Citi Bike</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stations</td>
<td>750+</td>
</tr>
<tr>
<td>Docks</td>
<td>25k</td>
</tr>
<tr>
<td>Bikes</td>
<td>12k</td>
</tr>
<tr>
<td>Subscribers</td>
<td>147k</td>
</tr>
<tr>
<td>Rides in ‘18</td>
<td>17.5M</td>
</tr>
<tr>
<td>Record day</td>
<td>80,624</td>
</tr>
<tr>
<td>(6/26/2018)</td>
<td></td>
</tr>
</tbody>
</table>
Allocating bikes

\[
\begin{align*}
\text{minimize}_b & \sum_i c_i(b_i) \\
\text{s.t.} & \sum_i b_i \leq B \\
& \forall i : 0 \leq b_i \leq r_i, \text{integer}
\end{align*}
\]
Choice of Objective Function

- Subscription system
- Minimize user dissatisfaction
- View planning period as 6am-midnight
- Objective: expected number of bike & dock stock-outs (\(= \# \) upset customers) in a day

- Challenging due to tidal flows of commuters
- For now: Ignore time dependence of flow rates
The “Physics”

Using fact that delayed Poisson process is Poisson process
The System Decomposes

- Assume never run out of bikes “upstream” (strong)
- Then for any station
 - Biker arrival process is Poisson
 - Biker return process is Poisson
 - And they’re independent, assuming “self loops” are negligible
- Each station individually behaves like an $M_t/M_t/1/N$ queue
- Huge simplification! Treat each station alone, not a network
Computation for each station

- Break down the day into 30 minute intervals
- Assume rates are piecewise constant over intervals
- Compute objective function (how?) in each interval and add them up
- In each interval the number of bikes as a function of time is a continuous-time Markov chain
- Rate matrix A
- Different rate matrices in different intervals
- Expected number of bike outages = arrival rate * \(\text{time empty}\)
 = arrival rate * \((30 \text{ minutes} \times \text{fraction of time station is empty})\)
- $\pi A = 0$ and then look at π_0?
- Model one time interval, [0, 30] = [0, T]
- Define $h(x) = I(x=0)$ (similar approach for upper boundary)

$$w(x) = E_0 T \int_0^T + \int_0^T E_x \left[h(X_s) \right] \int_0^{\infty} E_x h_0(X_{s_s}) ds$$

$$g(x) = \int_0^\infty E_x [h(X_s)] - \pi_0 ds$$

$$g = \int_0^\infty P(s) h - \pi_0 e ds$$
• Kolmogorov’s backward equation $P'(t) = A P(t)$

$$g = \int_0^\infty P(s) h - \pi_0 e \, ds = \int_0^\infty P(s)(h - \pi_0 e) \, ds$$

$$Ag = \int_0^\infty AP(s) h_c \, ds$$

$$\quad = \int_0^\infty P'(s) h_c \, ds$$

$$\quad = [P(s) h_c]_0^\infty$$

$$\quad = -h_c$$
From Poisson to what we want

\[v = \pi_0 e^T + \int_0^T P(s)h_c \, ds \]

\[= \pi_0 e^T + \int_0^\infty P(s)h_c \, ds - \int_T^\infty P(s)h_c \, ds \]

\[= \pi_0 e^T + g - P(T) \int_0^\infty P(s)h_c \, ds \]

\[= \pi_0 e^T + (I - P(T))g \]

- \(P'(t) = A P(t) \). So \(P(t) = e^{At} \)
Piecing things together

\[v = \ldots \]

\[p(30) = p(0)P \]

\[p(60) = p(30)P \]

\[\ldots \]
Results
Daily Planning Problem: Optimization

Place bikes to minimize $E[\#\text{upset cust}]$

Thm: Cost function convex in bikes
Need to go beyond moving bikes overnight. Move docks?
Optimization Model

Out-of-stock events at station i when initialized with d_i empty docks and b_i bikes (full docks)

\[
\begin{align*}
\text{minimize}_{(\tilde{d}, \tilde{b})} & \quad \sum_{i} c_i(d_i, b_i) \\
\text{subject to} & \quad \sum_{i} (d_i + b_i) \leq D + B \\
& \quad \sum_{i} b_i \leq B \\
& \quad \sum_{i} |\tilde{d}_i + \tilde{b}_i - d_i - b_i| \leq 2z \\
& \quad \forall i : l_i \leq d_i + b_i \leq u_i
\end{align*}
\]

a budget on docks,
a budget on bikes,
a budget on docks moved,
and bounds on the size of each station
Multimodularity

“multidimensional diminishing returns”

A function c is multimodular if

1. $c(d+1,b) - c(d+2,b) \leq c(d,b) - c(d+1,b)$
2. $c(d+1,b) - c(d+1,b+1) \leq c(d,b) - c(d,b+1)$
3. $c(d,b-1) - c(d+1,b-1) \leq c(d-1,b) - c(d,b)$

Proposition: The cost-function at each station is multimodular.

Proof by pathwise induction on sequence of events
Potential Improvements

Based on August 2016 data

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Cost in long run (no rebalancing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-run optimal dock-allocation</td>
<td>18349 (OPT)</td>
</tr>
<tr>
<td>Allocation currently in place</td>
<td>23851 (+30.0%)</td>
</tr>
</tbody>
</table>
Overnight Rebalancing

Mid-Rush Rebalancing

Corral Placement
Bike Angels

Featured Bike Angels

Hans, Midtown
“I like to do a ‘Bike Angels workout’ where I’ll bike north in Central Park to an empty station, then run back down the park and repeat a few times.”

Kelly, Lower East Side
“I’m not really a counter-commuter but I tend to check the Bike Angels map before each of my Citi Bike trips, and I earn a lot of points that way.”

How to earn points

You earn Bike Angel points depending on the pair of stations involved in your Citi Bike trips. See below for examples of how Pick Up and Drop Off points work!

1 point
Start at neutral station, bike to 1-point Drop Off

2 points
Start at 2-point Pick Up station, bike to neutral station

3 points
Start at 2-point Pick Up station, bike to 1-point Drop Off

Bike Angels are Citi Bike riders that...
improve the availability of bikes and docks for fellow riders and earn rewards along the way

Sign Up
Simulation for System Design

- Why:
 - Simulation better captures the “interactions”
 - Allows the modeling of more complex customer behaviors and (mid-day) rebalancing efforts
- Simulation yields objective function at one dock and bike allocation. How to optimize the allocation?
- Random search variants unlikely to be useful
- Want “∇c”
- Finite differences too expensive
 - With 750 stations, 1501 simulations
White Box: Perturbation Analysis

- Don’t treat simulation model as a black box
- Track objective C, but also objective with one extra dock, one extra bike at each station (so nominal + 750 stations * 2 = 1501 values)
- Compute differences as ∇C
- With replications we estimate E(∇C)
- What we really want is ∇c = ∇E(C)
- Does E(∇C) = ∇E(C)?
- This is the central question in perturbation analysis methods for gradient estimation
But does $E(\nabla C) = \nabla E(C)$?

- Nope
 - Gradients we estimate point in the wrong direction
- But do they provide a descent direction when far from the optimal solution?
- Let’s try it, optimizing over bikes only
Optimizing over bikes

Optimizing Bike and Dock in 6am-12am

Objective Value

Number of Simulation Days

~1.5 hours

~15 minutes
Simulation Commentary

- Estimated gradients are biased, point in wrong direction
- Still a descent direction when far from optimal.
- Can prove that under stylized settings, biased gradients can get you within a neighbourhood of an optimal solution
- Sufficient for many applications
- Perhaps too much emphasis on $\mathbb{E}(\nabla C) = \nabla \mathbb{E}(C)$
Conclusion

❖ Rebalancing is a major expenditure in bike-sharing
 ➢ Reallocate capacity to require less rebalancing
 ➢ Poisson’s equation to compute transient performance
 ➢ Multimodality

❖ Bike Angels originated at Cornell

❖ Simulation optimization: Embrace biased gradients?
Thank You!!