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Background on Motivate & Citi Bike

Citi Bike

Stations 750+

Docks 25k

Bikes 12k

Subscribers 147k

Rides in ‘18 17.5M

Record day
(6/26/2018)

80,624

❖ Motivate operates systems 
in NYC, Chicago, Boston, 
Bay Area, Washington...

❖ Across systems, more than 
100M rides since 2010



Allocating bikes
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Choice of Objective Function

• Subscription system
• Minimize user dissatisfaction
• View planning period as 6am-midnight
• Objective: expected number of bike & dock stock-outs 

( = # upset customers) in a day

• Challenging due to tidal flows of commuters
• For now: Ignore time dependence of flow rates



The “Physics”
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Using fact that delayed Poisson process is Poisson process



The System Decomposes
● Assume never run out of bikes “upstream” (strong)
● Then for any station

○ Biker arrival process is Poisson

○ Biker return process is Poisson

○ And they’re independent, assuming “self loops” are negligible
● Each station individually behaves like an Mt/Mt/1/N queue
● Huge simplification! Treat each station alone, not a network



Computation for each station

● Break down the day into 30 minute intervals
● Assume rates are piecewise constant over intervals
● Compute objective function (how?) in each interval and add them up
● In each interval the number of bikes as a function of time is a continuous-time 

Markov chain
● Rate matrix A
● Different rate matrices in different intervals
● Expected number of bike outages = arrival rate * time empty

= arrival rate * (30 minutes * fraction of time station is empty)
● !A=0 and then look at !0?



v(x) = Ex

Z T

0
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0
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● Model one time interval, [0, 30] = [0, T]
● Define h(x) = I(x=0) (similar approach for upper boundary)

T
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● Kolmogorov’s backward equation P’(t) = A P(t)
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From Poisson to what we want

v = ⇡0eT +
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T
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● P’(t) = A P(t). So P(t) = eAt



Piecing things together

30 60 90

v = . . .

p(30) = p(0)P

v = . . .

p(60) = p(30)P . . .





Daily Planning Problem: Optimization

Place bikes to minimize E[#upset cust]
Thm: Cost function convex in bikes

Bikes



Close
to 6AM
optimum

Far
from 6AM
optimum

12AM 6AM

Need to go beyond moving bikes overnight. Move docks?



Optimization Model

(d)

(b
)

max

min

Out-of-stock events at station i when initialized 
with di empty docks and bi bikes (full docks)

a budget on
docks,
a budget on
bikes,

a budget on
docks moved,

and bounds on the size of each station



A function c is multimodular if

1. c(d+1,b) - c(d+2,b) ≤ c(d,b) - c(d+1,b)
2. c(d+1,b) - c(d+1,b+1) ≤ c(d,b) - c(d,b+1)
3. c(d,b-1) - c(d+1,b-1) ≤ c(d-1,b) - c(d,b)

Multimodularity
“multidimensional diminishing returns”

Proposition: The cost-function at each station is multimodular.
Proof by pathwise induction on sequence of events



Potential Improvements

Allocation Cost in long run
(no rebalancing)

Long-run optimal dock-allocation 18349
(OPT)

Allocation currently in place 23851
(+30.0%)

Based on August 2016 data



Overnight Rebalancing

Mid-Rush Rebalancing

Corral Placement



Bike Angels





Simulation for System Design

● Why: 

○ Simulation better captures the “interactions”

○ Allows the modeling of more complex customer 
behaviors and (mid-day) rebalancing efforts

● Simulation yields objective function at one dock and bike 
allocation. How to optimize the allocation?

● Random search variants unlikely to be useful

● Want “"c”

● Finite differences too expensive

• With 750 stations, 1501 simulations



White Box: Perturbation Analysis

● Don’t treat simulation model as a black box
● Track objective C, but also objective with one extra dock, one extra bike at 

each station (so nominal + 750 stations * 2 = 1501 values)
● Compute differences as "C
● With replications we estimate E("C)
● What we really want is "c = "E(C)
● Does E("C) = "E(C)?
● This is the central question in perturbation analysis methods for gradient 

estimation



But does E("C) = "E(C)?

● Nope

○ Gradients we estimate point in the wrong direction

● But do they provide a descent direction when far from the 
optimal solution?

● Let’s try it, optimizing over bikes only



~1.5 hours

~15 minutes

Optimizing over bikes



Simulation Commentary

● Estimated gradients are biased, point in wrong direction
● Still a descent direction when far from optimal.
● Can prove that under stylized settings, biased gradients 

can get you within a neighbourhood of an optimal solution
● Sufficient for many applications
● Perhaps too much emphasis on E("C) = "E(C)



Conclusion

❖ Rebalancing is a major expenditure in bike-sharing
➢ Reallocate capacity to require less rebalancing

➢ Poisson’s equation to compute transient performance

➢ Multimodality

❖ Bike Angels originated at Cornell

❖ Simulation optimization: Embrace biased gradients?



Thank You!!


