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Background on Motivate & Citi Bike

* Motivate operates systems
in NYC, Chicago, Boston,
Bay Area, Washington...

% Across systems, more than
100M rides since 2010

Citi Bike
Stations
Docks
Bikes
Subscribers
Rides in ‘18

Record day
(6/26/2018)

750+
25k
12K
147k
17.5M
80,624




Allocating bikes

minimizep Z ci(b;)
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Choice of Objective Function

Subscription system

Minimize user dissatisfaction

View planning period as 6am-midnight

Objective: expected number of bike & dock stock-outs
( = # upset customers) in a day

Challenging due to tidal flows of commuters
For now: Ignore time dependence of flow rates



The “Physics”

Using fact that delayed Poisson process is Poisson process



The System Decomposes

e Assume never run out of bikes “upstream” (strong)
e Then for any station

o Biker arrival process is Poisson
o Biker return process is Poisson

o And they’re independent, assuming “self loops” are negligible
e Each station individually behaves like an M{/M/1/N queue
e Huge simplification! Treat each station alone, not a network



Computation for each station

Break down the day into 30 minute intervals
Assume rates are piecewise constant over intervals
Compute objective function (how?) in each interval and add them up
In each interval the number of bikes as a function of time is a continuous-time
Markov chain
Rate matrix A
e Different rate matrices in different intervals
e Expected number of bike outages = arrival rate * time empty
= arrival rate * (30 minutes * fraction of time station is empty)
e mA=0 and then look at m?



e Model one tlme mterval [0, 30] =[O, T]
e Define h(x) = S|m|Iar approach for upper boundary)
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e Kolmogorov’s backward equation P’(t) = A P(t)

/O P(s —WoedSZ/OmP(s)(h—woe)ds
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From Poisson to what we want

T
v = moel + / P(s)h.ds
0

:7T()6T—|—/ P(s)hcds—/ P(s)h.ds
0 T

= moel + g — P(T) / P(s)h.ds
0

= moel + (I — P(T))g
e P(t)=AP(t). So P(t) = e



Piecing things together

30

90




Results
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Daily Planning Problem: Optimization

Place bikes to minimize E[#upset cust]
Thm: Cost function convex in bikes

Cost curve of CTMC for a station

Number of bikes
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Need to go beyond moving bikes overnight. Move docks?



Optimization Model

Number of full docks (bikes) (P)

30 User Dissatisfaction Function max
. Out-of-stock events at station i when initialized
with d; empty docks and b; bikes (full docks)
20
. minimize( ip) Zci(di) bi)
i a budget on

104

e s.t.: Z(di +b;) <D+ B docks,
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Multimodularity

‘multidimensional diminishing returns”

A function c is multimodular if

1. c(d+1,b) - c(d+2,b)
2. c(d+1,b) - c(d+1,b+1)
3. c(d,b-1) - c(d+1,b-1)

c(d,b) - c(d+1,b)
c(d,b) - c(d,b+1)
c(d-1,b) - c(d,b)

IN IN IN

Proposition: The cost-function at each station is multimodular.
Proof by pathwise induction on sequence of events



Based on August 2016 data

Potential Improvements

Allocation Cost in long run

(no rebalancing)

Long-run optimal dock-allocation 18349
(OPT)
Allocation currently in place 23851

(+30.0%)
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B | ke An g e I S Featured Bike Angels

Hans, Midtown Kelly, Lower East Side
7 ke to do a "Blke Angels workout’ “I'm not really a counter<ommuter
where 'l bike north In Central Park Bt | tend 1o check the Bike Angels
10 an empty station, then run back map before each of my COul Bike
down the park and repeat a few trips, and | eam a lot of points that : H Y 4 H H
o o > Bike Angels are Citi Bike riders that...
improve the availability of bikes and docks for
H i rnr r long th

You earn Bike Angel points depending on the pair of stations involved ...
your Citi Bike trips. See below for examples of how Pick Up and Drop
Off points work!

1 point 2 points 3 points
Start at neutral station, Start at 2-point Pick Up Start at 2-point Pick Up
bike to 1-point Drop Off statlon, bike to neutral station, blke to 1-point
station Drop Off o) o
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Simulation for System Design

Why:
o Simulation better captures the “interactions”

o Allows the modeling of more complex customer
behaviors and (mid-day) rebalancing efforts

Simulation yields objective function at one dock and bike
allocation. How to optimize the allocation?

Random search variants unlikely to be useful
Want “vc”

Finite differences too expensive
With 750 stations, 1501 simulations



White Box: Perturbation Analysis

e Don't treat simulation model as a black box

Track objective C, but also objective with one extra dock, one extra bike at
each station (so nominal + 750 stations * 2 = 1501 values)

Compute differences as VC

With replications we estimate E(VC)

What we really want is Vc = VE(C)

Does E(VC) = VE(C)?

This is the central question in perturbation analysis methods for gradient
estimation



But does E(VC) = VE(C)?

o NOpe

o Gradients we estimate point in the wrong direction
o But do they provide a descent direction when far from the
optimal solution?
o Let'stry it, optimizing over bikes only



Objective Value

Optimizing over bikes
Opti!nizing Bike anq Dock in 6am-1'23m

12000
11000
10000 +

9000}

8000 |

~1.5 hours

7000 \
\ ~15 minutes

6000 .
0 5000 10000 15000 20000
Number of Simulation Days




Simulation Commentary

o Estimated gradients are biased, point in wrong direction

o Still a descent direction when far from optimal.

o Can prove that under stylized settings, biased gradients
can get you within a neighbourhood of an optimal solution

o Sufficient for many applications

o Perhaps too much emphasis on E(VC) = VE(C)



Conclusion

¢ Rebalancing is a major expenditure in bike-sharing

> Reallocate capacity to require less rebalancing
> Poisson’s equation to compute transient performance

> Multimodality

» Bike Angels originated at Cornell

¢ Simulation optimization: Embrace biased gradients?



Thank You!!
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