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We study the strip packing problem, in which a set of two-dimensional rectangular items has to be packed in a rectangular
strip of fixed width and infinite height, with the aim of minimizing the height used. The problem is important because it
models a large number of real-world applications, including cutting operations where stocks of materials such as paper or
wood come in large rolls and have to be cut with minimum waste, scheduling problems in which tasks require a contiguous
subset of identical resources, and container loading problems arising in the transportation of items that cannot be stacked
one over the other.

The strip packing problem has been attacked in the literature with several heuristic and exact algorithms, nevertheless,
benchmark instances of small size remain unsolved to proven optimality. In this paper we propose a new exact method
that solves a large number of the open benchmark instances within a limited computational effort. Our method is based on
a Benders’ decomposition, in which in the master we cut items into unit-width slices and pack them contiguously in the
strip, and in the slave we attempt to reconstruct the rectangular items by fixing the vertical positions of their unit-width
slices. If the slave proves that the reconstruction of the items is not possible, then a cut is added to the master, and the
algorithm is reiterated.

We show that both the master and the slave are strongly NP-hard problems and solve them with tailored preprocessing,
lower and upper bounding techniques, and exact algorithms. We also propose several new techniques to improve the standard
Benders’ cuts, using the so-called combinatorial Benders’ cuts, and an additional lifting procedure. Extensive computational
tests show that the proposed algorithm provides a substantial breakthrough with respect to previously published algorithms.

Subject classifications : strip packing problem; exact algorithm; Benders’ decomposition; combinatorial Benders’ cut.
Area of review : Optimization.
History : Received March 2013; revisions received September 2013; accepted October 2013. Published online in Articles

in Advance.

1. Introduction
In the strip packing problem (SPP) we are given a set N=

81121 0 0 0 1 n9 of rectangular items of width wj and height
hj , and a rectangular strip of width W and infinite height.
The aim is to pack the items in the strip by minimizing
the height used for the packing. Items cannot overlap, must
be packed with their edges parallel to the borders of the
strip, and cannot be rotated. A SPP solution is depicted in
Figure 1(a), where a set of seven items is packed in a strip
of width W = 10, by using minimum height z= 9.

The SPP is important because it models a large number
of real-world applications. It models cutting applications in
the manufacturing industry, where stock of materials such
as paper, wood, glass, and metal come in large rolls and
have to be cut by minimizing waste; see, e.g., Gilmore
and Gomory (1965). It also models scheduling problems
in which tasks require a contiguous subset of identical
resources, see, e.g., Augustine et al. (2009), and packing
problems arising in the transportation of items that cannot
be stacked one over the other, see, e.g., Iori et al. (2007).

The SPP is a challenging combinatorial problem. It is
NP-hard in the strong sense, and also very difficult to solve
in practice. Benchmark instances proposed decades ago and
containing just 20 items remain unsolved to proven opti-
mality despite dozens of attempts. In terms of exact algo-
rithms, the best results for the SPP have been obtained by
the use of combinatorial branch-and-bound algorithms that
build solutions by packing items one at a time in the strip.
Among these, we cite the algorithms by Martello et al.
(2003), Lesh et al. (2004), Bekrar et al. (2007), Alvarez-
Valdes et al. (2009), Kenmochi et al. (2009), Boschetti
and Montaletti (2010), and Arahori et al. (2012). Tech-
niques based on other concepts have also been devel-
oped: mixed integer linear programs (MILP) were used in
Sawaya and Grossmann (2005), Westerlund et al. (2007),
and Castro and Oliveira (2011), whereas SAT-based algo-
rithms were developed in Grandcolas and Pinto (2010) and
Soh et al. (2010).

In terms of approximation schemes, Harren et al.
(2011) presented a 5/3+� polynomial time approximation
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Figure 1. (a) An optimal SPP solution; (b) the 1CBP relaxation; (c) the P�cont�Cmax relaxation.
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scheme. Kenyon and Rémila (2000) proposed an asymp-
totic fully polynomial time approximation scheme pro-
viding a solution of cost not higher than 41 + �5opt +

O41/�25, where opt is the optimal solution value. Jansen
and Solis-Oba (2009) presented an asymptotic polynomial
time approximation scheme giving solutions bounded by
41 + �5opt + 1.

For what concerns heuristic algorithms with good prac-
tical computational performance, almost all metaheuristic
paradigms have been applied to the SPP. In recent years,
good results have been obtained with a GRASP technique
in Alvarez-Valdes et al. (2008), a squeaky wheel optimiza-
tion methodology in Burke et al. (2011), a two-stage heuris-
tic in Leung et al. (2011), and a skyline heuristic in Wei
et al. (2011).

The majority of the exact algorithms for the SPP make
use of the two following relaxations, obtained by “cutting”
items into unit-width or unit-height slices, respectively. The
first relaxation is based on the well-known bin packing
problem, in which a set of weighted items has to be packed
into the minimum number of capacitated bins.

Definition 1. The bin packing problem with contiguity
constraints (1CBP) is the relaxation of the SPP obtained by
cutting each item j into hj slices of height 1 and width wj ,
and the strip into bins of height 1 and width W . The aim
is to pack the slices into the minimum number of bins, by
ensuring that slices derived from the same item are con-
tiguous one to the other: If the kth slice of item j (j ∈N1
k = 1121 0 0 0 1 hj ) is packed in bin i, then the 4k+15th slice,
if any, must be packed in bin i+ 1.

The second relaxation is based on the standard parallel
processor scheduling problem (P�Cmax), in which a set of
jobs having a given processing time has to be scheduled
on a set of processors, so as to minimize the largest total
processing time assigned to a processor (makespan).

Definition 2. The parallel processor scheduling problem
with contiguity constraints (P�cont�Cmax) is the relaxation
of the SPP obtained by cutting each item j into wj slices of

width 1 and height hj , and the strip into W vertical slices.
We associate each item slice to a job having processing
time hj , and each vertical strip slice to a processor. The
aim is to assign the slices to the processors, by minimizing
the makespan and ensuring contiguity between the slices
of the same item (if the kth slice of item j is assigned to
processor i, then the 4k+15th slice, if any, must be assigned
to processor i+ 1).

Figure 1(b) shows an optimal solution for the 1CBP
relaxation of the SPP instance of Figure 1(a): Items have
been cut horizontally and packed in nine bins. Similarly,
Figure 1(c) gives an optimal solution to the relaxation
induced by the P�cont�Cmax on the same SPP instance:
Items have been cut vertically and assigned to the W pro-
cessors using minimum makespan 9. (Note that, in the lit-
erature, most graphical representations of bin packing and
parallel processing scheduling problems, when not related
to the SPP, draw bins as vertical containers and processors
as horizontal lines, so they are “90� rotated” with respect
to our figures.)

Both the 1CBP and the P�cont�Cmax are known to be
strongly NP-hard. From a practical point of view they are,
however, easier than the SPP, and the solution values they
provide (that can be different one from the other) are usu-
ally tight lower bounds on the optimal SPP height.

Several algorithms, starting from Martello et al. (2003)
and notably including Alvarez-Valdes et al. (2009), also
used the 1CBP and/or the P�cont�Cmax solution to try to
compute a feasible solution for the original SPP instance.
Suppose we are given the P�cont�Cmax solution of Fig-
ure 1(c), we can try to obtain the feasible SPP solution of
Figure 1(a) by adjusting the y-coordinates of the slices, so
that all slices belonging to the same item are at the same
y-coordinate, always ensuring that there is no overlapping
among items. This problem can be defined as follows.

Definition 3. Given a feasible P�cont�Cmax solution using
makespan z, in which the first slice of an item j ∈ N is
packed in processor xj , problem y-check is to determine if
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there exists an array yj , with 0 ¶ yj ¶ z−hj , and such that
the solution in which any item j is packed with its bottom
left corner in position 4xj1 yj5 is feasible for the SPP.

Problem y-check is strongly NP-complete (this is
proved in §3.1), and most of the attempts developed in the
literature for its solution are heuristics. The approach we
propose is very innovative with respect to the literature,
because we solve, instead, problem y-check with an exact
algorithm, and, most important, we use it in a systematic
way to optimally solve the SPP.

In particular, we propose a new exact algorithm for the
SPP that exploits the full potentiality of the introduced
relaxations by means of a Benders’ decomposition. At the
first step, in the master problem, we solve to optimality
the P�cont�Cmax relaxation. Then we try to obtain a feasible
SPP solution, by solving the slave problem y-check. If a
feasible solution is achieved, then it is also optimal, and
hence we terminate. Otherwise a Benders’ cut prohibiting
the current P�cont�Cmax solution is added to the master, and
the procedure is reiterated.

Benders’ cuts are known to be weak in practice, and
hence we try to strengthen them by borrowing the concept
of combinatorial Benders’ cuts, introduced in Codato and
Fischetti (2006). In practice we look for a minimal infeasi-
ble subset, i.e., a minimal subset of items that still causes
the infeasibility of the considered solution, and introduce
the cut only for this subset, instead than for the complete
set of items. After this has been done, we further improve
the cut by means of a tailored lifting procedure based on
the solution of linear programs.

The three problems we address (master, slave, and search
for the minimal infeasible subset) are all difficult, and pos-
sibly need to be solved several times. However, our result-
ing algorithm is usually fast in practice and, also because of
a large number of optimization techniques that we propose,
obtains very good computational results on the benchmark
sets of instances.

1.1. Main Contributions of This Paper

The main contributions of this work are the following:
• we propose an innovative Benders’ decomposition that

models the SPP and exploits the full potentiality of the
P�cont�Cmax relaxation;

• we present several preprocessing, lower bounding,
heuristic, and exact algorithms for the master problem
(derived from the P�cont�Cmax), taken from the related lit-
erature or newly developed;

• we prove that the slave problem in our decomposition
(problem y-check) is strongly NP-hard;

• we solve problem y-check with an algorithm based on
new preprocessing techniques and a new enumeration tree
enriched with fathoming criteria, and show that this method
is highly efficient in practice;

• we propose nontrivial ways to strengthen the Benders’
cuts into combinatorial Benders’ cuts, and present a new

effective lifting procedure based on the solution of a linear
model;

• we design an overall algorithm for the SPP, and test
it on the benchmark instances obtaining very good com-
putational results. In particular, we solve for the first time
to proven optimality instances cgcut03 by Christofides
and Whitlock (1977), and instances gcut04 and gcut11 by
Beasley (1985). We provide 34 new proven optimal solu-
tions for the 500 instances proposed by Berkey and Wang
(1987) and Martello and Vigo (1998). We obtain, on aver-
age, better solutions than all previously published exact
algorithms, with a comparable or smaller computational
effort.

2. A Benders’ Decomposition for the
Strip Packing Problem

We first provide the necessary notation, and then describe
our decomposition approach and the prior work in the
related literature.

2.1. Notation

We suppose the strip is located in the positive quadrant of
the Cartesian coordinate system, with its bottom left cor-
ner located in position 40105, as shown in Figure 1(a). Let
H be a valid upper bound on the optimal solution value. For
simplicity we call rows the H unit-height bins obtained by
cutting the strip horizontally (see Figure 1(b)), and columns
the W unit-width processors obtained by cutting the strip
vertically (see Figure 1(c)). Rows are numbered from 0
to H − 1, and columns from 0 to W − 1. We say that
an item covers a row, respectively a column, if the row,
respectively the column, intersects the item in the consid-
ered packing (e.g., item 3 in Figure 1(a) covers rows 2 and
3, and columns 2–5).

We say that an item j is packed in position 4pj1 rj5 if
its bottom left corner has x-coordinate equal to pj and
y-coordinate equal to rj (e.g., item 3 in Figure 1(a) is
packed in 42125). For feasibility we have that 0 ¶ pj ¶
W −wj and 0 ¶ rj ¶H −hj . This set of feasible positions
may be reduced by considering the well-known principle
of normal patterns by Herz (1972) and Christofides and
Whitlock (1977), which states that there is an optimal solu-
tion in which each item is moved as down and as left as
possible (hence touching at its left, and at its bottom, either
the strip or the border of another item). To this aim we
define

W4j5=

{

pj =
∑

i∈N\8j9

wi�i2 0 ¶ pj ¶W −wj1 �i ∈ 80119

∀ i ∈N\8j9

}

1 (1)

H4j5=

{

rj =
∑

i∈N\8j9

hi�i2 0 ¶ rj ¶H −hj1 �i ∈ 80119

∀ i ∈N\8j9

}

1 (2)
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the sets of normal patterns for item j along the x- and
y-axis, respectively. Sets W4j5 and H4j5 are computed
using a standard dynamic programming (DP) technique;
see, e.g., Christofides and Whitlock (1977). We similarly
define

W4j1 q5=
{

pj ∈W4j52 q −wj + 1 ¶ pj ¶ q
}

1 (3)

H4j1 t5=
{

rj ∈H4j52 t −hj + 1 ¶ rj ¶ t
}

(4)

the subset of normal patterns along the x-axis for which
item j occupies column q, and the subset of normal patterns
along the y-axis for which item j occupies row t, respec-
tively. Finally, let W=

⋃

j∈NW4j5 and H=
⋃

j∈NH4j5 be
the global sets of normal patterns along the x- and y-axis,
respectively.

2.2. A Mathematical-Logic Model

The SPP can be modeled by using two sets of variables:
A binary variable xjp taking value 1 if item j is packed in
column p, 0 otherwise, and a continuous nonnegative vari-
able yj giving the height of the bottom border of item j .
A single variable z is then used to define the total height
of the solution. The SPP can be described through the fol-
lowing mathematical-logic model:

(SPP0) min z1 (5)
∑

p∈W4j5

xjp = 1 j ∈N1 (6)

∑

j∈N

∑

p∈W4j1 q5

hjxjp ¶ z q ∈W1 (7)

yj +hj ¶ z j ∈N1 (8)

nonoverlap
{

6yj1 yj +hj 71 j ∈N2
∑

p∈W4j1 q5

xjp = 1
}

q ∈W1 (9)

xjp ∈ 80119 j ∈N1 p ∈W4j51 (10)

yj ¾ 0 j ∈N0 (11)

Constraints (6) impose that each item is packed in exactly
one column. Constraints (7) force z to be not smaller than
the total height of the items that occupy any column q,
whereas constraints (8) force z to be not smaller than the
upper border of any item j . Note that constraints (7) are
not strictly necessary for the correctness of the model, but
are essential for our decomposition approach. Logical con-
straints (9) impose that the vertical intervals 6yj1 yj + hj 7
corresponding to the set of items that occupies the same
column q, do not overlap.

2.3. The Decomposition Approach

In the classical decomposition approach by Benders (1962),
the aim is to solve an MILP problem P2 min8cT y +

f 4x5: Ay+ g4x5¾ b, y ¾ 01 x ∈ Dx9. The method starts

by finding a vector x̄ ∈ Dx, and considers the lin-
ear slave problem SP: min8cT y+ f 4x̄5: Ay+ g4x̄5 ¾ b,
y ¾ 09, which can be solved by means of the dual slave
SD2 max8uT 4b− g4x̄55 + f 4x̄5: uTA¶ c, u¾ 09. A solu-
tion ū of SD induces a linear constraint z¾ ūT 4b−g4x55+
f 4x5, the so-called Benders’ cut, that is used to populate
the master problem MP2 min8z2 z¾ uT

k 4b − g4x55+ f 4x51
k = 1121 0 0 0 1K1 x ∈Dx9, where u11 u21 0 0 0 1 uK are the solu-
tions of K dual problems obtained by iterating the above
procedure.

A special case occurs when c = 0 and we start by
optimally solving the master problem obtained by remov-
ing variables y from P , i.e., by setting x̄ = arg min8f 4x5:
g4x5¾ b, x ∈Dx9. The slave SP then becomes a feasibil-
ity check on the system 8Ay + g4x̄5¾ b1 y ¾ 09. If SP has
a solution ȳ, then 4x̄1 ȳ5 is an optimal solution to P . If,
instead, SP has no feasible solution, then x̄ is not feasible
for P and we know that at least one of the xj variables
must take a value different from x̄j . We write this condition
as a linear constraint and add it to the master problem.

A better implementation does not add the cut containing
all the x variables, but finds a smaller (possibly minimal)
subset of variables that still induces infeasibility in the slave
problem, and uses this set to derive the cut. The resulting
constraint is called combinatorial Benders’ cut in Codato
and Fischetti (2006), but the method can also be seen
as an implementation of the logic-based Benders’ decom-
position approach presented in Hooker (2000), Jain and
Grossmann (2001), and Hooker and Ottosson (2003). We
finally observe that, in the case of combinatorial Benders’
cuts, it is not necessary that the slave is a continuous
linear model.

For the SPP, when we remove variables y from model
(5)–(11), we obtain an MILP that models the P�cont�Cmax

problem, namely,

(P�cont�Cmax) min z1 (12)
∑

p∈W4j5

xjp = 1 j ∈N1 (13)

∑

j∈N

∑

p∈W4j1 q5

hjxjp ¶ z q ∈W1 (14)

xjp ∈ 80119 j ∈N1 p ∈W4j50 (15)

Model (12)–(15) was used in Boschetti and Montaletti
(2010) to obtain their lower bound LBM

F 1 . Suppose now an
integer solution S = 8zs1 xs

jp9 to (12)–(15) has been com-
puted: the slave is then to find a feasible solution, if any,
to problem

4y-check5 yj +hj ¶ zs j ∈N1 (16)

nonoverlap
{

6yj1 yj +hj 71 j ∈N2
∑

p∈W4j1 q5

xs
jp = 1

}

q ∈W1 (17)

yj ¾ 0 j ∈N0 (18)
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If y-check returns a feasible solution, then we obtained an
optimal solution of the original SPP instance. Otherwise
we forbid the current P�cont�Cmax solution S, by adding a
cut to the master problem. To this aim, let

ps
j =

∑

p∈W4j5

pxs
jp (19)

denote the x-coordinate of the first slice of item j in solu-
tion S. The Benders’ cut is then

∑

j∈N

xj1psj ¶ n− 10 (20)

Suppose now we can find a reduced subset of items
Cs ⊆N, such that, if we pack all its items in position ps

j ,
then problem y-check still has an infeasible solution (the
way in which we look for Cs is discussed in §4). Then, we
obtain the combinatorial Benders’ cut

∑

j∈Cs

xj1psj ¶ �Cs
� − 10 (21)

We can then model the SPP as the following master
problem:

(SPP) min z1 (22)
∑

p∈W4j5

xjp = 1 j ∈N1 (23)

∑

j∈N

∑

p∈W4j1 q5

hjxjp ¶ z q ∈W1 (24)

∑

j∈Cs

xj1psj ¶ �Cs
� − 1 ∀Cs infeasible to y-check1 (25)

xjp ∈ 80119 j ∈N1 p ∈W4j50 (26)

The good aspect of this decomposition is the fact that it
allows to develop tailored optimization techniques both for
the master and the slave, taking advantage of their combi-
natorial structures.

In particular, we solve the slave with preprocessing tech-
niques and an enumeration tree enriched with fathoming
criteria, obtaining an algorithm (see §3) that is very fast
in practice. For the master, we found computationally con-
venient to develop an iterative procedure that attempts dif-
ferent tentative strip heights, in an interval given by valid
lower and upper bounds. At each attempt it solves the
recognition version of the master, and updates the tenta-
tive strip height accordingly. The procedure is described
in details in §5, and is based on preprocessing techniques,
a large set of lower and upper bounding algorithms, and
the direct solution of the MILP (22)–(26) with delayed cut
generation.

The latter algorithm largely benefits from techniques
aimed at finding improved Benders’ cuts, that we describe
in §4. The literature on this area of research is quite new,
so we briefly summarize it in the next section.

2.4. Prior Work

The concept of primal decomposition of an MILP was orig-
inally proposed by Benders (1962), who studied the case
in which the master results in an MILP and the slave in
an LP. Later, Geoffrion (1972) generalized it to the case in
which also the slave is an MILP.

In recent years, Hooker and Ottosson (2003) presented
the concept of logic-based Benders’ decomposition, a gen-
eral framework in which both master and slave are MILPs,
and the slave is solved by logical deduction methods, whose
outcome is used to produce valid cuts. An interesting use
of this approach is the one in which the master is solved
by using standard MILP optimization, and the slave with a
constraint program (CP). Successful examples of this type
of decomposition have been proposed by, e.g., Jain and
Grossmann (2001) and Hooker (2007). Jain and Grossmann
(2001) present hybrid MILP/CP decomposition methods to
solve a class of problems where the variables in the slave
have zero coefficient in the original objective function, and
apply them to the problem of scheduling jobs on parallel
machines with release and due dates, while minimizing the
sum of input processing costs. The master is an MILP that
produces an assignment of jobs to machines and is solved
with IBM Ilog Cplex. The slave is a CP that checks the
feasibility of each assignment of jobs to a machine, and is
solved with IBM Ilog Scheduler. Hooker (2007) proposes a
similar approach to solve again a class of scheduling prob-
lems on parallel machines, but with the aim of minimizing
either cost, makespan, or total tardiness.

Note that our algorithm differs from the ones by Jain and
Grossmann (2001) and Hooker (2007), because it solves
master and slave with dedicated combinatorial algorithms,
and considers the more general case in which the activities
of the machines are not independent one from the other,
but strictly related among them (intuitively, an item j must
be assigned to wj machines).

The name “combinatorial Benders’ cuts” was introduced
by Codato and Fischetti (2006), who studied a decomposi-
tion in which the master is an ILP involving binary vari-
ables x, and the slave is an LP involving continuous vari-
ables y. Whenever a solution to the master is infeasible
for the slave, they look for a minimal infeasible subsystem
(MIS) of the LP associated to the slave, and then introduce
in the master the corresponding cut. Since the problem of
determining a MIS is NP-hard, they make use of a greedy
algorithm. Moreover, they limit their study to the case in
which the constraints relating x and y are given by linear
inequalities, each containing a single entry for the x array.
Our approach differs from the one by Codato and Fischetti
(2006) in several aspects, the most important being the fact
that the slave is not an LP, but a strongly NP-complete
problem.

3. Solution of the Slave Problem
We are given the input of the SPP, plus a tentative strip
height zs and a vector ps

j that gives the x-coordinate
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Figure 2. A framework to reduce Partition to
y-check.
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(i.e., column) in which item j is packed. In our decom-
position vector ps

j is obtained from a starting solution
S = 8zs1 xs

jp9 to (12)–(15), by using (19). In this section
we describe how to solve the resulting y-check problem,
see Definition 3, which calls for the determination of the
y-coordinates to be assigned to each item so as to obtain
a feasible SPP solution of height zs , if any exists. We first
discuss the problem complexity, and then present our solu-
tion algorithm.

3.1. Complexity

Let us consider the SPP solution depicted in Figure 2,
where 9 items are packed in a strip of height zs = 2B+ 3,
with B a given integer positive value. All items have
width 1, with the exception of items 3, 4, and 5 that have
width 3. They are packed in the x-coordinates ps = 601 4,
0, 1, 2, 1, 3, 3, 17, and have heights h= 62B + 21 2B + 21
1, 1, 1, B+ 11 B+ 11 B, B7.

Items 3 and 5 cannot be packed at the same y-coordinate,
because they would overlap, so, because of the presence of
items 1 and 2, item 3 must be assigned at the bottom of the
strip and item 5 at the top (the obvious symmetric solution
where 3 is at the top and 5 at the bottom is also possi-
ble). A further examination of the remaining items shows
that the only feasible y-check solution for items 4, 6, 7, 8,
and 9 is the one depicted in the figure. This solution leaves
two empty buckets of width 1 and height B. These buckets
can be used to prove the NP-completeness of y-check, by
using a transformation from the following problem.

Definition 4. Partition. Given n̄ items, each having
weight sj ∈ Z+ (j = 1121 0 0 0 1 n̄), find a subset S ⊆ 81121
0 0 0 1 n̄9 such that

∑

j∈S sj =
∑n̄

j=1 sj/2, if any.

Lemma 1. Problem y-check is NP-complete.

Proof. Given an instance of Partition with n̄ items, each
having weight sj , we construct an instance of y-check with
n = 9 + n̄ items. We first set B =

∑n̄
j=1 sj/2 and zs =

2B+ 3. The first nine items that we select for the y-check
instance are those depicted in Figure 2, whose dimensions
and x-coordinates are described at the beginning of §3.1.
We have shown above that these nine items can be feasi-
bly packed in a strip of height zs , if and only if they are
given y-coordinates as in Figure 2. Thus, in each feasible
y-check solution two empty buckets of width 1 and height
B are left at the x-coordinate 2 of the strip. We complete
the instance by adding a y-check item for each item of
Partition. These n̄ items have width wj = 1, x-coordinate
ps
j = 2, and height equal to the weight of the corresponding

item in Partition, i.e., hj = sj−9, for j = 101111 0 0 0 1 n.
In a feasible y-check solution items 101111 0 0 0 1 n must

be packed inside the two buckets of height B, so y-check
has a feasible solution if and only if Partition has.
Since Partition is NP-complete, the same holds for
y-check. �

By using an extension of the above lemma, we can prove
the following stronger result.

Theorem 1. Problem y-check is strongly NP-complete.

The proof is given in the online appendix (avail-
able as supplemental material at http://dx.doi.org/10.1287/
opre.2013.1248).

3.2. Algorithms for Problem y -Check

For the solution of y-check we developed several algo-
rithms, and obtained the best computational performance
by using a combinatorial enumeration tree, enriched by
reduction and fathoming criteria. The resulting algorithm,
called y-check algorithm in the remaining of the paper,
starts with the three new preprocessing techniques, invoked
in sequence one after the other.

Preprocessing 1: Merge Items. For any item j , let us
define L4j5, respectively R4j5, the subset of items that can
be packed at the left, respectively right, of j . Formally,

L4j5=
{

i ∈N\8j92 ps
i +wi ¶ ps

j

}

1 (27)

R4j5=
{

i ∈N\8j92 ps
i ¾ ps

j +wj

}

0 (28)

In a first step, we consider items one at a time, for nonin-
creasing order of ps

j . For a given item j , if hi ¶ hj holds
for all i ∈L4j5, then we attempt packing the items of L4j5
in the substrip of width ps

j and height hj , by invoking the
y-check enumeration tree described at the end of this sec-
tion. If all items in L4j5 fit into the substrip, then we merge
j and L4j5 into a unique item, say k, having wk = ps

j +wj ,
height hk = hj and ps

k = 0. This preserves the optimal-
ity of the solution, because no other item can enter the
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induced substrip. This first step is based on ideas proposed
by Clautiaux et al. (2007) and Alvarez-Valdes et al. (2009)
for two-dimensional packing, but extends them to problem
y-check.

In a second step, if not all the items in L4j5 fit into the
substrip, or there are some items i having hi >hj , then we
remove items from L4j5 in an iterative way. We proceed
from left to right: Let p̄ be the first column occupied by
an item in L4j5 and w̄ be the largest width of an item in
L4j5 being packed in p̄. We check if L4j5 can be exactly
partitioned into two subsets, one completely contained in
the columns 60111 0 0 0 1 p̄+ w̄−17, and one completely con-
tained in the columns 6p̄+ w̄1 p̄+ w̄+11 0 0 0 1 ps

j −17. If this
is possible, then we focus our search on the latter group of
columns. Formally, we check if there are no items i ∈L4j5
having ps

i < p̄ + w̄ and ps
i +wi > p̄ + w̄. If no items with

this property exist, then we set L4j5= 8i ∈N\8j92 p̄+ w̄ <
ps
i +wi ¶ ps

j9. In this way, we are left with a reduced set
of items and a reduced substrip of width ps

j − 4p̄+ w̄5 and
height hj . Once again, no item outside L4j5 may enter
this reduced substrip at the left of j , and hence we invoke
the enumeration tree to try to merge j and the reduced
set L4j5. If instead L4j5 cannot be partitioned, then we
increase p̄ to be the next column where an item of L4j5 is
packed, and reattempt the partition.

We reiterate until a merging is obtained or L4j5 is empty.
We then repeat the process with R4j5, for which we iterate
from right to left. For an example, consider Figure 1(c) and
j = 4. At the left, L445= 829 and no merging is possible.
At the right, R445 = 85179 at the first iteration and no
merging is possible. At the second iteration R445 = 859,
and 4 and 5 are merged into a unique item of width 3 and
height 2.

Preprocessing 2: Lift Item Widths. We consider
items one at a time, by nondecreasing width, breaking
ties by nondecreasing height. For any item j , we compute
L4j5 and R4j5 using (27) and (28), respectively. Let `j =

maxi∈L4j58pi +wi9 if L4j5 is not empty, and `j = 0 other-
wise. Similarly, let rj = mini∈R4j58pi9 if R4j5 is not empty,
and rj =W otherwise. We move item j to its left as much
as possible, by setting ps

j = `j , and then enlarge its width as
much as possible, by setting wj = rj −`j . We then reiterate
with the next item.

Note that this preserves the optimality of the solu-
tion, because no item can be packed side-by-side with j
in the columns between `j and rj . Consider again Fig-
ure 1(c). This second preprocessing would produce w3 = 5,
w4 = 5 (recall items 4 and 5 were merged by the previ-
ous preprocessing) and w6 = 8. The outcome is depicted in
Figure 3(a).

Preprocessing 3: Shrink the Strip. This technique is
based on the following simple idea. Suppose that a col-
umn p is occupied by a set S of items, and that a feasible
packing for these items exists. A consequence is that, if

no item outside S occupies column p + 1, then the pack-
ing of the items in S is also feasible for column p + 1.
In practice, it is enough to check the feasibility only for
those columns where the left border of an item is packed.
Thus we remove all other columns from the instance and
reduce the widths of the items and of the strip accordingly.
Consider for example the instance of Figure 3(a). The only
columns that we keep are column 0 (ps

1 = ps
2 = 0), column 2

(ps
3 = ps

4 = ps
6 = 2), and column 7 (ps

7 = 7). The instance
that is given to the successive y-check enumeration tree in
depicted in Figure 3(b).

Note that these y-check preprocessing techniques con-
sistently reduce the size of the addressed instances and are
much more effective than the standard techniques for the
SPP (see, e.g., Boschetti and Montaletti 2010, and refer-
ences therein), because they largely benefit from the addi-
tional information given by the vector ps

j .
At the end of the preprocessing phase, all items having

width equal to the width of the strip are packed at the
bottom of the strip, and then removed from the instance.
The packing of the remaining items is attempted with the
following exact algorithm.

Enumeration Tree for Problem y-Check. This pro-
cedure constructs partial solutions by adding one item at
a time, starting from an empty solution. For the sake of
simplicity we continue using the standard notation adopted
so far, i.e., n, W , H , wj , hj1 0 0 0, but recall that these val-
ues may have been modified by preprocessing. Following
a notation common in two-dimensional packing, we define
the skyline as the line that touches the top of the packed
items; see the dashed line in Figure 3(c). Let hused4p5 be
the height of the skyline in column p (i.e., hused4p5 gives
the sum of the heights of the packed items and of the pos-
sibly created holes that cover column p). Let us also define
the niche as the horizontal segment of the skyline that has
the smallest value of hused; see again Figure 3(c). If more
horizontal segments having the same smallest value of hused

exist, then the niche is the left most one. In the following
we suppose that the niche starts in column ` and ends in
column r (with r included in the niche).

We define hleft and hright as the heights of the left and
right border of the niche, respectively, and compute them
as follows. If `= 0 then hleft = zs , else hleft = hused4`− 15.
If r = W − 1 then hright = zs , else hright = hused4r + 15. For
example, in Figure 3(b) we have ` = r = 1, hleft = 8 and
hright = 7. Let N′ ⊆N be the set of items still to be packed
at a given node, and N′4`1 r5⊆N′ the set of items that can
be packed in the niche, i.e., N′4`1 r5= 8j ∈N′: ps

j ¾ ` and
ps
j +wj ¶ r + 19.
The enumeration tree has one node for each partial solu-

tion and branches on the items that can be packed in
the associated niche. At the root node the strip is empty
and the niche corresponds to the whole strip. We sort
items in N′4`1 r5 by nondecreasing value of ps

j , and create
�N′4`1 r5� + 1 nodes. The first �N′4`1 r5� nodes are created
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Figure 3. (a) Instance of Figure 1(c) modified by preprocessing 1 and 2; (b) further modification by preprocessing 3;
(c) a partial packing.
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by selecting an item j ∈N′4`1 r5, in order, and packing it in
position ps

j . The last node is obtained by packing no item at
all in the niche, and, in this case, we close the whole niche
and lift the skyline by setting hused4p5= min8hleft1 hright9 for
p = `1 ` + 11 0 0 0 1 r . When an item j is packed, if ps

j > `,
then we close the rectangular space of height hj , start-
ing in ` and terminating in ps

j − 1, by setting hused4p5 =

min8hleft1 hused4p5+hj9 for all p = `1 `+11 0 0 0 1 ps
j −1. This

is done to kill symmetries, because the solutions in which
an item was packed in this rectangular space were already
explored by previous nodes, because of the sorting. The
resulting tree is explored in depth-first search.

At each node the following fathoming criteria are used:
1. let hpack4p5 be the total height of the items in N′

that cover column p, for p = 0111 0 0 0 1W − 1. If hused4p5+

hpack4p5 > zs holds for a certain column p, then the current
node is fathomed;

2. if N′4`1 r5 contains at least one item, say j , such that
hused4p

s
j5 + hj ¶ min8hleft1 hright9, then we create a single

descendant node by packing j in ps
j , and skip the (domi-

nated) node in which no item is packed in the niche;
3. if there are two items j and k in N′4`1 r5, with j < k,

having wj =wk, hj = hk and ps
j = ps

k, then we fathom those
nodes that attempt packing k before j (because the same
solution is found by the “twin” node that packs first j and
then k);

4. when packing item j , we check if there is an item k
having wk = wj , k > j and being already packed in ps

j

at height hused4p
s
j5 − hk, i.e., at the top of the skyline.

If this is the case, then the node is fathomed (again, the
same solution is found by the twin node that packs first
j and then k, note that in this case hj can be different
from hk);

5. when packing item j , if ps
j > ` holds, then we check

if there exists an item k ∈N′4`1 r5, k 6= j , that enters com-
pletely in the rectangle at the left of j that would be closed
by the packing of j , i.e., an item k having ps

k ¾ `, ps
k +

wk ¶ ps
j , and hk ¶ min8hleft −hused4`51hj9. If such k exists,

then we fathom the node (because the same solution is
found by packing first k and then j).

4. Improving and Lifting
the Benders’ Cuts

In the following, we suppose we are given a solution S=

8zs1 xs
jp9, which is infeasible to y-check and has to be cut

from the master problem. To improve the standard Benders’
cuts (20), we developed a procedure that uses four steps (all
newly developed ideas). In the first three steps, described
in §4.1, we look for minimal infeasible subsets, i.e., mini-
mal subsets of items still producing an infeasible y-check
instance, and use them to derive the stronger cuts (21). In
the last step, described in §4.2, we try to further lift the
cut by adding xjp variables through the solution of linear
models. In the following, recall that vector ps gives the
x-coordinates in which items are packed in S.

4.1. Finding Minimal Infeasible Subsets of Items

The problem of determining a minimal infeasible subset
is NP-hard, because the underlying recognition problem,
y-check, is NP-complete, thus we are content to solve it
in a greedy fashion.

The first step of our procedure looks for vertical cuts in
the packing induced by S, i.e., for columns p ∈ W such
that N can be partitioned into two sets, N1 = 8j ∈N2 ps

j +

wj ¶ p9 and N2 = 8j ∈ N2 ps
j ¾ p9, with N1 ∪N2 = N. If

such a column exists, then the packing of the items in N1

is not influenced by the packing of the items in N2, and
vice versa. Thus, we reexecute the y-check algorithm on
both N1 and N2 and determine which subset is infeasible
(at least one is infeasible because S is so). Clearly, if k
vertical cuts are found, the set of items is partitioned into
k+1 subsets accordingly. Then, the successive steps of our
procedure are executed on the resulting infeasible subset(s)
of items.

The second step tries to remove one column at a time
from the strip. It first removes from S column 0 and all
items j having ps

j = 0. If the reduced instance is infeasible
for y-check, then it continues by removing the next column
from the left in which at least one item is packed, and all
items packed in that column. It reiterates as long as the
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reduced instance remains infeasible. Then, it starts from
the right, by selecting column W − 1 and all items that
occupy it, removing them from the instance and invoking
the y-check algorithm. Again, it reiterates as long as the
reduced instance remains infeasible. The instance obtained
at the end of this process possibly has a reduced bin width
and a smaller number of items, but it is still a cause of
infeasibility and is then passed to the next step for further
reduction.

The third step considers the items one at a time according
to a given ordering. It removes the current item from S and
reexecutes the y-check algorithm on the reduced instance.
If the outcome is feasible, then the item is reinserted in S,
otherwise we found a reduced cause of infeasibility and
keep the current item out of S. In any case, we reiterate
with the next item until all items have been scanned. At the
end of the scan, we are left with a reduced subset of items,
that still induces an infeasibility. The result of this step
depends on the order in which items are selected. For this
reason we perform several attempts with different order-
ings. The first attempt selects items according to a nonde-
creasing value of area. In the second attempt we assign a
success score with each item. This is initially set to 0 at
the beginning of the solution of the current SPP instance,
and then increased by one unit if the removal of the item
from S was successful in previous iterations of the decom-
position algorithm (i.e., if it led to a reduced instance that
was still infeasible). The second attempt we perform then
selects items according to nondecreasing value of success
score. The third attempt simply selects items randomly, and
is executed 10 times.

A simple hash list is used to keep track of the reduced
instances for which the y-check algorithm was invoked, so
as to avoid duplicate calls. At the end of these three steps
we typically obtain a few minimal infeasible subsets of
items, Cs ⊆N, that can be used for the cuts of type (21).

4.2. Lifting the Cut

The fourth and last step of our procedure aims at lifting
(21), for a certain Cs ⊆N, as follows. For each item j , let
us define Ks4j5 the subset of items that vertically overlap
with j in solution S, i.e., the set of items that have at least
one column in common with j in S. Suppose now that
we move j from ps

j to a different position at its left or at
its right, keeping all other items in their original position
in S. As long as Ks4j5 remains the same, then we know
that S is still infeasible for y-check. Without the need of
supplementary calls to y-check, we can thus obtain a set of
x-coordinates for the left border of j that keep S infeasible.
In terms of binary variables, we can add to the left-hand
side of the cut all the xjp variables corresponding to the
selected x-coordinates, without affecting the right-hand side
(because just one of the coordinates can be selected for
packing j), thus lifting the original cut.

To obtain the most effective lifting we proceed in the
following way. For each item j ∈ Cs we introduce two

nonnegative variables, lsj and r sj , and denote with [lsj 1 r
s
j ]

the interval along the x-axis in which we look for the
x-coordinate of j . Let also Ks

p4j5 be the subset of items
that vertically overlap with j , when j is packed in column
p ∈ 6lsj 1 r

s
j 7. If Ks

p4j5 = Ks4j5 for all j ∈ Cs , then prob-
lem y-check is still infeasible. We can thus find the largest
lifting by solving the LP:

4Cs-lift5 max
∑

j∈Cs

4r sj − lsj51 (29)

lsj +wj ¾ r si + 1 j ∈Cs1 i ∈Ks4j51 (30)

0 ¶ lsj ¶ ps
j j ∈Cs1 (31)

ps
j ¶ r sj ¶W −wj j ∈Cs0 (32)

Constraints (30) impose that items j and i overlap in any
solution in which j is packed in any column of [lsj 1 r

s
j ] and i

in any column of [lsi 1 r
s
i ] (to this aim, note that, if i ∈Ks4j5,

then j ∈Ks4i5). Constraints (31) and (32) are used to state
that, for any item j , the selected interval [lsj 1 r

s
j ] is such that

(i) the item always lies inside the strip, and (ii) the original
position ps

j of the item in S is inside the interval.
We then use the optimal solution (l̄sj , r̄

s
j ) to (29)–(32), to

obtain the following lifted combinatorial Benders’ cut:
∑

j∈Cs

∑

p∈6l̄sj 1 r̄
s
j 7

xjp ¶ �Cs
� − 10 (33)

Summarizing, starting from the original Benders’ cut (20),
we obtain several (much stronger) lifted combinatorial Ben-
ders’ cuts (33) and add all of them to the master problem.
The computational effectiveness of this procedure is shown
in §6.

5. An Exact Algorithm for the
Strip Packing Problem

The mathematical models and the algorithms presented in
the previous sections have been inserted into an overall
algorithm for the solution of the SPP. This algorithm also
makes use of several additional techniques to speed up its
convergence to the optimum, either best practices coming
from the related literature, or newly developed procedures.
For this reason we called it BLUE, from Benders’ decom-
position with lower and upper bound enhancements.

An informal pseudo-code is outlined in Algorithm 1.
Intuitively, BLUE first preprocesses the instance and com-
putes an upper bound U and a lower bound L on the opti-
mal solution value. Then, as long as L is strictly smaller
than U , it solves the recognition version of the SPP, called
SPP(L), in which the height of the strip is fixed to L, and
the aim is to find a feasible packing of the items not exceed-
ing L, if any (the problem is also known in the literature as
the two-dimensional orthogonal packing problem; see, e.g.,
Clautiaux et al. 2007). The SPP(L) instance is first passed
to a preprocessing procedure, and then solved by two exact
methods, namely, a combinatorial branch-and-bound and
the Benders’ decomposition of §2. In the remaining of this
section we give the details of each step of the algorithm.
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Algorithm 1 (Algorithm BLUE for the Solution of the
Strip Packing Problem)

1: preprocess instance
2: compute an upper bound U and a lower bound L

3: while L<U do
4: comment: Solve SPP(L) = recognition version of SPP at

height L
5: preprocess item heights
6: if

∑

j∈N �H4j5�<
∑

j∈N �W4j5� then rotate instance
7: solve SPP(L) with combinatorial branch and bound

(B&B)
8: if B&B failed then solve SPP(L) with Benders’

decomposition
9: if Benders’ decomposition failed then return heuristic

solution
10: if SPP(L) is feasible then
11: U 2= L

12: else
13: increase L

14: end-if
15: end while

5.1. Preprocessing and Bounds

In the following we suppose items are sorted by nonincreas-
ing width, breaking ties by nonincreasing height. Algorithm
BLUE first preprocesses the instance using the three tech-
niques described in Section 2.2 of Boschetti and Montaletti
(2010). The first technique aims at packing large items at
the bottom of the strip, and requires to run a heuristic
(which in our case is the algorithm described below to com-
pute U ) on a subinstance. The second technique computes
the maximum total width W ′ of a subset of items that can
be packed side by side without exceeding the strip width
W (by solving a standard subset sum problem), and then, if
the resulting value is strictly smaller than W , it reduces the
strip width by setting W = W ′. The third technique com-
putes, for any item j in order, the maximum total width w′

j

of a subset of items that can be packed side by side with j
without exceeding W (again by solving a subset sum prob-
lem), and then, if wj +w′

j <W , it increases the item width
by setting wj =W −w′

j .

Lower Bounds. To obtain a valid lower bound we first
make use of three polynomial time procedures from the
literature:

1. The simple lower bound L1 = max8�
∑

j∈Nwjhj/W �3
maxj∈N hj9.

2. A more sophisticated lower bound, L2, based on the
most performing dual feasible functions. In practice, L2 is
evaluated as LBM

dff , described in Section 3.2 of Boschetti
and Montaletti (2010), but with the inclusion of only the
first three dual feasible functions (the fourth one was dis-
regarded because more time consuming and not computa-
tionally effective on our instances).

3. A third lower bound, L3, obtained by invoking the
alternating constructive procedure described in Section
4.2.6 of Alvarez-Valdes et al. (2009).

Then we invoke two newly developed and more time-
consuming procedures. The first one is obtained by con-
sidering the relaxation of the 1CBP (see Definition 1), in
which we remove the constraint that horizontal slices must
be packed contiguously one with the other, and only impose
that each bin contains at most one slice of each item. The
problem, known in the literature as the noncontiguous bin
packing problem (NCBP), can be modeled as follows.

We define a pattern t as a subset of items whose total
width is not larger than W , and describe it by a column
4a1t1 0 0 0 1 ajt1 0 0 0 1 ant5

T ∈ 80119n, where ajt takes value 1 if
item j is in pattern t, 0 otherwise. Let T be the family of
all patterns containing at most one slice for each item, and
let zt be an integer variable giving the number of times that
pattern t is used (t ∈T). The NCBP is then

(NCBP) min
∑

t∈T

zt1 (34)

∑

t∈T

ajtzt ¾ hj j ∈N1 (35)

zt ¾ 01 integer t ∈T0 (36)

Model (34)–(36) corresponds to model F2 by Boschetti
and Montaletti (2010), that they solve by generating a pri-
ori the entire set of undominated patterns to compute their
lower bound LBM

F 2 . In the literature, the NCBP relaxation
is also sometimes referred to as “bar relaxation,” see, e.g.,
Belov and Rohling (2013). Since the NCBP is strongly
NP-hard, we are content with the continuous relaxation of
(34)–(36), which we solve by the standard column genera-
tion algorithm originally proposed by Gilmore and Gomory
(1961) for the cutting stock problem. The fact that an item
should appear at most once in a pattern is easily taken into
account in the slave knapsack problem that has to be solved
to generate columns. This is done by associating a binary
variable with each item j ∈ N (instead of an integer vari-
able not greater than hj , as in the standard algorithm for the
cutting stock). This column generation procedure is quite
standard for one-dimensional packing problems, but, as far
as we know, this is the first time it is applied to the solution
of the NCBP.

Let L4 be the round up of the resulting solution value.
Now that we know that all horizontal slices can be continu-
ously packed in L4 bins, we check if the same fact holds for
the vertical slices. We then fix the height of the strip to be
L4, “cut” items and strip using the vertical orientation, and
again solve the continuous relaxation of (34)–(36). In this
second attempt patterns are combinations of items whose
total height does not exceed L4, and hj is replaced by wj

in (35). If the resulting solution value is greater than W ,
then no feasible packing of the vertical slices exists, so we
increase L4 by one. We reiterate this second attempt as long
as its solution value is greater than W .

The last procedure is obtained by solving the root node
of the MILP (12)–(15) for the P�cont�Cmax, and storing the
rounded up value of the resulting makespan as L5. The
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lower bound we obtain is L= maxi∈11000158Li9, where L1, L2

and L3 have polynomial complexity, L4 has pseudopolyno-
mial complexity (if the ellipsoid algorithm is used to solve
the LPs, see Caprara and Monaci 2009) and is fast in prac-
tice, whereas computing L5 is strongly NP-hard and can
be time consuming for the large instances (this is why at
this step we limit its solution to the root node).

Upper Bounds. To obtain a valid upper bound we
start by invoking (our implementation of) the algorithm by
Leung et al. (2011). This is a two-stage approach, in which
the first stage is a constructive heuristic, and the second one
is an improvement procedure based on simulated annealing.
In our implementation we impose a limit of 104 iterations
to the simulated annealing, to lower the computation time.
We call U1 the resulting solution value.

We then invoke a new heuristic based on the solution of
the 1CBP (recall Figure 1(b)). At each iteration this heuris-
tic selects an unpacked item, and packs all its slices left
justified in the bins, starting from the bottom-most bin that
has enough residual space to accommodate a slice. It reit-
erates until all items are packed. Bins are closed once they
cannot accommodate any more items. The resulting partial
solutions have a classical staircase structure. In details, the
first item j is selected randomly, and its slices are packed
at the left of bins 0111 0 0 0 1 hj −1. Let r be the index of the
bottom-most open bin. The next item is chosen by using a
score-based method that has the aim of filling bin r in the
best possible way. A score vj is assigned to each item j
that is still unpacked, with vj initially set to 2 if j is as
large as the residual space in r , 0 otherwise. Then, if by
packing j in r , the top of j is as high as the first horizontal
segment at its left in the staircase, then vj is increased by 2.
If instead the top of j is as high as the top of any other
horizontal segment in the staircase but the first, then vj is
increased by 1. The item with highest score is selected (ties
are broken randomly) and all its slices are packed.

After the heuristic packed all items, if the resulting 1CBP
solution value is smaller than U1, then we try to obtain a
feasible SPP solution by invoking the y-check algorithm,
with a limit of 2 · 105 iterations (determined on the basis
of preliminary computational experiments and discussed
below in §6.2) and three CPU seconds (necessary to limit
the effort for instances having large values of n or W ). The
instances for which y-check was invoked are stored in a
hash table, so as to avoid checking them twice. The algo-
rithm is executed 10 times, and the best solution value is
stored in U2. We then compute U = min8U13U29.

Summarizing, the initialization of Algorithm BLUE
computes in order U11L11L21L31L41L5, and U2, and up-
dates U and L accordingly. The execution is clearly stopped
whenever L=U .

5.2. Closing the Gap

After the preprocessing and the computation of the bounds,
if L is strictly smaller than U , then we enter a loop in

which we try to solve SPP(L). We first try to lift the item
heights. To this aim we use the third preprocessing tech-
nique described in §5.1, but work on heights instead of
widths. Formally, we compute for any item j in order the
maximum total height h′

j of a subset of items that can be
packed vertically over j without exceeding L, and then, if
hj +h′

j <L, we set hj = L−h′
j .

As a general remark, it is usually “easier” (i.e., computa-
tionally faster) to solve a P�cont�Cmax problem with a small
number of columns, than a 1CBP with a large number of
bins. For this reason we compute the sets of normal patterns
along the x- and y-axis, by using (1) and (2), respectively,
and setting H = L. Then, if

∑

j∈N �H4j5� <
∑

j∈N �W4j5�
we “rotate” the instance, i.e., we exchange L with W , and
hj with wj for all j ∈N. Clearly after the instance is solved
we restore the original dimensions. Note that the two terms
in the check give the number of variables in the resulting
master problems with one orientation or the other; see (26).

We then invoke the two exact procedures for solving the
SPP(L), both described in details below. If these procedures
prove that a feasible solution at height L exists, then we
stop the algorithm with a proof of optimality. If instead
they prove that no feasible solution exists at height L, then
we increase L and reiterate. In the latter case, we compute
the minimum integer ` > L such that there exists a feasi-
ble combination of item heights whose value is exactly `,
and then set L = `. If the two procedures fail in proving
feasibility or infeasibility at height L, then the algorithm
terminates by returning a heuristic solution.

Branch and Bound for the SPP(L). The first attempt
to find an exact SPP(L) solution is based on a branch and
bound (B&B) for the recognition version of the P�cont�Cmax

in which the makespan is fixed to L. This B&B starts with
W empty columns, and enumerates solutions by packing
one item at a time in the left-most column that still has
some residual space to accommodate items. Packing an
item j in a column p means, in our approach, packing
all the slices of j at the bottom of columns p1p + 11 0 0 0 1
p+wj −1. As a consequence, the resulting partial solutions
have a staircase structure.

Let h̄p be the total height of the slices packed in col-
umn p in a partial solution. At each node, the B&B first
selects the left-most column p, which still has h̄p < L.
It then creates a descendant node for any item j satisfying
h̄p + hj ¶ L. It packs j in p, computes hmin as the mini-
mum height of the items still to be packed, and then sets
h̄q = h̄q + hj if h̄q + hj + hmin ¶ L, h̄q = L otherwise, for
q = p1p + 11 0 0 0 1 p + wj − 1. If column p is not empty
(i.e., h̄p > 0 holds), then the B&B also creates an additional
node in which it packs no item at all in p, and in this case
it sets h̄p = L.

At any node of the tree we apply the following fathoming
criteria:

1. If there are two items j and k, with hj = hk, wj =wk

and j > k, then we pack j only after k has been packed.
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2. We define an array i4p5 in which we store, for any
column p, the maximum index of an item packed with its
left-most slice in p. At any iteration we allow to pack an
item j in p only if j > i4p5.

3. We use the standard continuous lower bound on the
area. Namely, if the area of the items still to be packed is
greater than the residual area 4WL−

∑

p=01110001W−1 h̄p5, then
we fathom the node.

4. We make use of the DP cut, a lower bounding tech-
nique based on iterated solutions to subset sum problems,
described in Section 4.3.1 of Kenmochi et al. (2009).

Criteria 1 and 2 are derived from Mesyagutov et al.
(2011) and are used to kill symmetries: they forbid the
same solution to be found at several nodes in the tree.
Criteria 3 and 4 are standard lower bounding techniques
that forbid infeasible SPP(L) solutions. The DP cut proce-
dure computes the minimum waste that can arise in any
column and any row of the partially packed bin, and com-
bines them together to compute a lower bound. It is very
effective on perfect packing instances, but can be quite time
consuming in general, so it is invoked only when the three
previous techniques failed in fathoming the node. Note that
by using these criteria we are still enumerating all possi-
ble P�cont�Cmax solutions, and hence we do not lose any
possible solution for the SPP(L).

During the exploration of the B&B tree, whenever we
find a feasible P�cont�Cmax solution (“candidate” in the fol-
lowing), we invoke the y-check algorithm, with a maximum
number of 2 · 107 iterations (this parameter choice is moti-
vated in §6.2), to determine if it is also feasible for the
SPP(L).

There are three possible exits for the B&B:
1. The y-check algorithm returns a feasible solution for a

candidate. In this case we found a feasible SPP(L) solution,
so we terminate BLUE with a proof of optimality.

2. We prove that no feasible solution exists, because we
explore the complete tree and the y-check algorithm returns
infeasible for all candidates. We thus increase L and reit-
erate BLUE.

3. We explore a maximum number of nodes, or the
y-check algorithm fails for a candidate (and does not find
a feasible solution for any other attempted candidate). In
this case we proceed with the Benders’ decomposition
described below.

This B&B is effective on the so-called perfect packing
instances, i.e., on those instances in which the optimal solu-
tion has no waste. Thus, the maximum number of explored
nodes is set to 107 nodes if the instance appears to be a
perfect packing, i.e., if the best lower bound L is equal
to
∑

j∈Nwjhj/WH , and to 5 · 104 otherwise. These two
halting parameters were determined with preliminary tests,
and give the best compromise between computational effort
and solution quality. The first value is useful on the n and
ht instances, whereas the second is enough to solve the
majority of the ngcut and beng instances; see §6.1. Other
attempts that we made to speed up the algorithm, as, e.g.,

using dual feasible functions at any node of the tree, or
selecting the bottom-most niche instead of the left-most
column, led to slightly worse computational results.

Benders’ Decomposition for the SPP(L). We solve
the MILP (22)–(26) of §2.3, by lifting constraints (25) to
(33) as described in §4. As noticed before, we work on
a fixed height L instead than on the minimization of the
strip height. This is simply obtained by disregarding the
objective function and setting z= L in (24).

There are two ways to solve MILPs involving expo-
nentially many constraints. In a modern branch-and-cut
implementation, the violated constraint is added as soon
as possible to the model, by using callbacks invoked at
the nodes of the MILP enumeration tree. In the standard
delayed cut generation method, the master is solved to
optimality, then one finds violated cuts, if any, adds them
to the model and reoptimizes the master, until no further
violation exists. We attempted both implementations, and
obtained slightly better results with the delayed cut gen-
eration method. Indeed, the branch and cut was on aver-
age faster than the delayed cut method on instances solved
to optimality by both approaches, especially when several
infeasible y-check solutions were found, but it missed a few
optimal solutions that were easily found by the delayed cut
method. In our opinion, the reason for the slightly better
behavior of the latter method is that it allows the solver
to use completely the automated preprocessing techniques,
which are very effective for the SPP(L), and the dynamic
search method, which is much faster than the standard
branch and cut in the instances that we tested.

Whenever the MILP returns a feasible solution, we check
if this is also feasible for SPP(L) by invoking the y-check
algorithm with a maximum number of 2 · 107 iterations. If
the y-check algorithm fails for a candidate instance, then
we suppose the instance is infeasible, add the correspond-
ing cut(s), and continue the search. Note that we can still
provide a proven optimal solution if we find another solu-
tion at the same height L, which is feasible for y-check.

Similarly to the B&B, also the Benders’ decomposition
has three exits:

1. It finds a feasible, thus optimal, SPP(L) solution, so
BLUE terminates.

2. It proves that no solution exists at height L, because,
after possibly inserting cuts, the MILP returns infeasible,
thus BLUE increases L and reiterates.

3. It reaches a time limit, or the y-check algorithm fails
for a candidate (and does not find a feasible solution for
any other candidate), so BLUE terminates with a heuristic
solution.

We also use two further enhancements. First, we de-
crease the number of variables as follows:

1. We select the item j having the largest number of
variables, and impose it to be packed in the left half of the
strip by removing all variables xjp with p¾W/2.
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2. Suppose that an item j may be packed in a column p,
but the area at the right of j would be lost, because all items
have width greater than W − p −wj . Further suppose that
there is another column q > p in which j can be packed. In
this case we remove variable xjp from the program, because
any solution in which j is packed in p may be transformed
into an equivalent one in which j is packed in q.

The second enhancement is an MILP-based heuristic,
which is invoked before the decomposition for the instances
with identical items (i.e., items having same width and
height). We consider again the MILP (22)–(26) and solve it
as discussed, but replace the binary variables xjp with inte-
ger ones. In particular, suppose there are k4j5 items identi-
cal to item j and having index greater than j , then all these
items are removed from the instance, and variables xjp are
constrained to be integer such that 0 ¶ xjp ¶ 1 + k4j5, for
p ∈ W4j5. After the model is solved, the values of the
integer variables are easily mapped back into the original
binary ones, and the solution is given to the y-check algo-
rithm. If feasible, then the heuristic ends with an optimal
SPP(L) solution (and BLUE terminates), otherwise valid
cuts are searched with the procedure of §4, mapped again
on the integer variables, and inserted into the model. The
resulting algorithm is just a heuristic because the Benders’
cuts may forbid feasible solutions, but sometimes achieves
feasible solutions in short time.

6. Computational Results
All algorithms have been implemented in C++ and run
on an Intel Core(TM)2 Quad CPU Q8200, running at
2.33 GHz under Linux openSUSE 11.4 operative sys-
tem. The LPs and the MILPs were solved with IBM
Ilog Cplex 12.5, by setting parameters RepeatPresolve = 3,
Reduce = 3, Probe = 3, Simmetry = 5, and imposing it
to use a single processor (Threads = 1). The subset sum
problems were solved using a standard dynamic program-
ming, and the knapsack problems with procedure combo
by Martello et al. (1999). Algorithm BLUE was allowed a
time limit of 1200 CPU seconds on each instance.

6.1. Comparison with Existing Methods

We tested our algorithm on the benchmark instances that
have been addressed with exact methods in the SPP litera-
ture, and compare with the previous algorithms. We refer to
Boschetti and Montaletti (2010), and references therein, for
the details on the original papers that provided the bench-
mark instances. We address in total 560 instances, so we
only provide here a summarized information of our results,
but refer to the appendix, and also to our website http://
www.or.unimore.it/resources/SPP.html, for more details.

In Table 1 we give a summary of our results, and com-
pare with the following algorithms:

• MMV03 = Martello et al. (2003), run on a Pentium 3
at 0.8 GHz,

• BKC07 = The most performing algorithm (DA) by
Bekrar et al. (2007), run on a Pentium M at 1.7 GHz,

• APT09 = Alvarez-Valdes et al. (2009), run on a Pen-
tium 4 at 2 GHz,

• KINYN09 = The most performing SPP algorithm
(G-STAIRCASE) by Kenmochi et al. (2009), run on a Pen-
tium 4 at 3 GHz,

• BM10 = Boschetti and Montaletti (2010), run on a
Pentium M 725 at 1.6 GHz,

• CO11 = The most performing algorithm (DS) by Cas-
tro and Oliveira (2011), run on an Intel Core2 Duo T9300
at 2.5 GHz, and

• AIT12 = Arahori et al. (2012), run for some instances
on an Intel Xeon X5260 at 3.3 GHz, and for some other
instances on an Intel Xeon E5540 at 2.53 GHz, as described
in Table 1.

Under the name of each contribution, we report the speed
of the computer that was used, and the maximum time limit
in seconds that was allowed. For each benchmark set, we
report the name of the set and the number of instances (#).
For each algorithm and each set, we report in column
“opt” the number of optimal solutions, and in column “sec”
the average CPU time in seconds (computed only on the
instances optimally solved by that algorithm). The high-
est number of optimal solutions for each set is reported in
bold.

Benchmark sets ngcut, ht, and beng are relatively easy.
Both BM10, AIT12, and BLUE solve all the instances in
these sets to proven optimality in a short time, while the
remaining approaches fail for a few instances. Our algo-
rithm is almost as fast as AIT12, and much faster than
BM10. We refer to the appendix for the detailed results on
these “easy” sets. On the other benchmark sets, which are
more difficult, BLUE obtains better results than all previ-
ous algorithms, and always improves the number of proven
optimal solutions within short computational times. Some
more details on the results on these sets are presented in
the next tables.

Table 2 gives the details of the results for the cgcut
instances by Christofides and Whitlock (1977). In column
“opt” we report a “∗” if the instance is solved to proven
optimality, in column “sec” we give the computational
time, and for BLUE we also report the optimal solution
value z. For BKC07 we write n.a. when their algorithm
converged to a suboptimal solution (a correct optimal solu-
tion for this case was later provided by AIT12). The first
instance is easily solved to optimality by all algorithms.
The second one was solved for the first time by AIT12 in
slightly more than 800 seconds, whereas BLUE only needs
about 20 seconds. The third instance was still an open prob-
lem, but BLUE solves it in less than 13 seconds.

Table 3 gives the details of the results on the gcut
instances by Beasley (1985). When BLUE fails in closing
the instance, in column z we provide the interval given
by the lower and upper bound that it found. The first four
instances have been addressed by all the exact algorithms
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Table 1. Summary of the computational results.

MMV03 BKC07 APT09 KINYN09 BM10 CO11 BLUE
0.8 GHz 1.7 GHz 2 GHz 3 GHz 1.6 GHz 2.5 GHz AIT12 2.33 GHz

t.l. = 3,600 s t.l. = 1,200 s t.l. = 1200 s t.l. = 3,600 s t.l. = 1,200 s t.l. = 3,600 s (∗) t.l. = 1,200 s

Name # Opt Sec Opt Sec Opt Sec Opt Sec Opt Sec Opt Sec Opt Sec Opt Sec

ngcut 12 11 118035 12 582089 12 7033 10 224019 12 35011 6 21051 12 0032 12 0020
ht 9 7 514033 7 288086 8 1058 9 8063 9 350000 7 558077 9 2064 9 6047
beng 10 6 318086 2 304021 10 1003 9 4005 10 138029 10 0097 10 0094
cgcut 3 1 11048 1 323054 1 0000 1 0012 1 0069 2 407086 3 11023
gcut-01-04 4 2 0000 1 0000 2 0000 3 2047 3 85019 4 2071
gcut-05-13 9 6 0076 7 28072
n 13 8 39020 4 345004 10 7081
“10 classes” 500 256 21040 274 34072 142 112061 322 26011

Note. (∗)= t.l.= 3,600 sec on a 3.3 GHz for ngcut, ht, beng, cgcut, gcut, and n; t.l.= 1,200 sec on a 2.53 GHz for the 10 classes.

Table 2. Results and comparison on the cgcut instances.

MMV03 BKC07 APT08 KINYN09 BM10 AIT12 BLUE
0.8 GHz 1.7 GHz 2 GHz 3 GHz 1.6 GHz 3.3 GHz 2.33 GHz

t.l. = 3,600 s t.l. = 3,600 s t.l. = 1,200 s t.l. = 3,600 s t.l. = 1,200 s t.l. = 3,600 s t.l. = 1,200 s

Name n W Opt Sec Opt Sec Opt Sec Opt Sec Opt Sec Opt Sec z Opt Sec

cgcut01 16 10 ∗ 11.48 ∗ 323.54 ∗ 0.00 ∗ 0.12 ∗ 0.69 ∗ 0000 23 ∗ 0003
cgcut02 23 70 t.lim. n.a. t.lim. t.lim. t.lim. ∗ 815071 64 ∗ 20074
cgcut03 62 70 t.lim. t.lim. t.lim. t.lim. t.lim. t.lim. 656 ∗ 12091

Table 3. Results and comparison on the gcut instances.

MMV03 BKC07 APT08 BM10 AIT12 BLUE
0.8 GHz 1.7 GHz 2 GHz 1.6 GHz 3.3 GHz 2.33 GHz

t.l. = 3,600 s t.l. = 3,600 s t.l. = 1,200 s t.l. = 1,200 s t.l. = 3,600 s t.l. = 1,200 s

Name n W Opt Sec Opt Sec Opt Sec Opt Sec Opt Sec z Opt Sec

gcut01 10 250 ∗ 0.00 ∗ 0.00 ∗ 0.00 ∗ 0.00 ∗ 0001 11016 ∗ 0001
gcut02 20 250 t.lim. n.a. t.lim. ∗ 7.41 ∗ 255048 11187 ∗ 1076
gcut03 30 250 ∗ 0.00 t.lim. ∗ 0.00 ∗ 0.00 ∗ 0009 11803 ∗ 0017
gcut04 50 250 t.lim. t.lim. t.lim. t.lim. t.lim. 21995 ∗ 8088
gcut05 10 500 ∗ 0.69 11273 ∗ 0030
gcut06 20 500 ∗ 1.33 21622 ∗ 1011
gcut07 30 500 ∗ 0.36 41693 ∗ 0056
gcut08 50 500 t.lim. 6518241519047 t.lim.
gcut09 10 11000 ∗ 0.09 21317 ∗ 0012
gcut10 20 11000 ∗ 2.08 51964 ∗ 35063
gcut11 30 11000 t.lim. 61866 ∗ 163010
gcut12 50 11000 ∗ 0.00 141690 ∗ 0019
gcut13 32 31000 t.lim. 6418031419457 t.lim.

in the table. Among them, instances gcut01 and gcut03 are
very easy and were solved by almost all algorithms in a
short time. Instance gcut02 was already solved by BM10
in seven seconds, and by AIT12 in 255 seconds, whereas
we need less than two seconds. Instance gcut04 was still
an open problem, and we solve it in less than nine seconds.
The remaining nine instances are characterized by a large
width, from 500 to 3,000. They were addressed just by
BM10, that could solve six of them, whereas we can solve
one instance more, gcut11, by using a similar computa-
tional effort. For the two instances still unsolved to proven
optimality, the intervals between the lower and upper bound

values provided by BM10 are, respectively, 6518141518957
for gcut08 and 6417761419477 for gcut13.

The optimal solutions of the two most important open
problems that we closed in these two sets, namely, cgcut03
and gcut04, are depicted in the appendix. They are very
interesting, because characterized by complex nonguillotine
structures, that create large holes and make it difficult to
compute both the lower and the upper bound. The solutions
that we obtained on all other instances are available on our
website.

The details of the results on the n instances by Burke
et al. (2004) are given in Table 4. In terms of exact
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Table 4. Results and comparison on the n instances.

KINYN09 3 GHz BM10 1.6 GHz BLUE 2.33 GHz
t.l. = 3,600 s t.l. = 1,200 s t.l. = 1,200 s

Name n W Opt Sec Opt Sec z Opt Sec

n01 10 40 ∗ 0027 ∗ 0 40 ∗ 0001
n02 20 30 ∗ 0008 ∗ 2016 50 ∗ 0004
n03 30 30 ∗ 289009 ∗ 770055 50 ∗ 0011
n04 40 80 ∗ 23002 t.lim. 80 ∗ 0016
n05 50 100 t.lim. t.lim. 100 ∗ 4063
n06 60 50 ∗ 0005 t.lim. 100 ∗ 4021
n07 70 80 ∗ 0011 ∗ 607045 100 ∗ 16079
n08 80 100 t.lim. t.lim. 6803837 t.lim.
n09 100 50 t.lim. t.lim. 150 ∗ 38013
n10 200 70 ∗ 0022 t.lim. 150 ∗ 6031
n11 300 70 ∗ 0074 t.lim. 150 ∗ 7071
n12 500 100 t.lim. t.lim. 630033117 t.lim.
n13 31152 640 t.lim. 696039887 t.lim.

algorithms, this set was addressed only by KINYN09 (just
the first 12 instances, using algorithm StaircasePP) and
BM10. Algorithm BLUE largely outperforms these two
exact algorithms, solving more instances to proven opti-
mality, using usually less time. Note that these instances
have been built ad hoc to have zero waste, and hence rep-
resent an interesting test bed more for heuristics than for
exact algorithms (indeed, that was their original scope),
because of the fact that the computation of sophisticated
lower bounds is useless. Indeed, for the three instances that
we could not solve to optimality, good upper bound values
were already provided by BM10 (81 for n08, 301 for n12,
and 961 for n13), but optimal solutions were then found by
the heuristic of Wei et al. (2011).

The details of the results on the 10 classes proposed by
Berkey and Wang (1987) and Martello and Vigo (1998) are
given in Table 5. Each class contains 50 instances, divided
into five groups of 10 instances, one for each value of
n ∈ 82014016018011009. These sets have been addressed
by APT08, BM10, and AIT12. Each line in the table gives
the number of optimal solutions and average time (for the
instances solved to proven optimality), for each group and
each algorithm. We present results only for those groups in
which at least one instance was solved by one of the algo-
rithms. BLUE is on average faster and provides a higher
number of proven optimal solutions than the previous algo-
rithms. Notably, it solves for the first time all instances with
n= 20 for the classes 3, 4, and 5.

6.2. Evaluation of the Behavior of BLUE

The most effective approaches published in the SPP liter-
ature are branch-and-bound algorithms based on the idea
of building solutions by packing one item at a time in the
strip. Algorithm BLUE has a completely different approach
that, intuitively, divides items into slices, packs slices, and
then attempts the reconstruction of the original items. This
innovative approach appears to perform better on all bench-
mark instances. This can be noted, for example, in Figure 4.

Figure 4. Number of optimal solutions (out of 50) per
class, from the most difficult to the easiest.
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The figure focuses again on the 10 classes, and graphically
depicts the number of optimal solutions for each algorithm
and each class, from the most difficult to the easiest. It can
be noted that BLUE provides equal or better results than
the other algorithms on each class.

It is important to notice that all the components of BLUE
contribute to the good results. The root node solves to
optimality 279 instances out of 560, with an average time
of about 10 seconds. Our new upper bound U2 improves
154 times the upper bound U1 that we derived from the
literature. The new lower bound L4 improves 122 times the
maximum value among the first three lower bounds that
we took from the literature (L1, L2, and L3), and then L5

obtains other 15 further improvements.
The main loop decreases the upper bound in 49 cases,

and, most important, increases the lower bound in 106 cases.
In this way it solves to optimality the other 98 instances. The
loop is iterated on average just once per instance. Inside the
loop, the feasibility or infeasibility of an instance is proven
39 times by the branch and bound and 328 times by the
Benders’ decomposition. Overall, the Benders’ decomposi-
tion is the most important part of the algorithm, because
it performs very well on the difficult instances. As men-
tioned in §5.2, the standard delayed cut generation method
is the implementation of the decomposition that gave the
best results, but it is worth noticing that the branch-and-cut
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Table 5. Results and comparison on the 10 classes (10 instances per line).

APT08 2 GHz BM10 1.6 GHz AIT12 2.53 GHz BLUE 2.33 GHz
t.l. = 1,200 s t.l. = 1,200 s t.l. = 1,200 s t.l. = 1,200 s

Class n W Opt Sec Opt Sec Opt Sec Opt Sec

1 20 10 10 2075 10 0067 10 137036 10 0044
40 10 10 6029 10 19055 4 0048 10 0012
60 10 7 28071 10 39097 2 4097 10 0025
80 10 9 105030 10 14026 1 0009 10 0044

100 10 5 93014 10 95068 2 0004 10 0092
2 20 30 9 0040 10 75075 10 1069 10 2068

40 30 9 0048 10 103055 10 0001 10 0013
60 30 8 4068 10 146093 10 0002 10 0032
80 30 8 2063 10 101084 10 0001 10 0042

100 30 9 5032 10 81093 10 0004 10 0051
3 20 40 8 229049 9 77001 9 292073 10 15013

40 40 6 0044 6 0037 4 12017 9 113045
60 40 4 2038 4 19023 0 9 72018
80 40 5 1079 5 12097 0 8 2064

100 40 6 2084 6 20099 0 7 4068
4 20 100 1 8000 1 608088 8 371077 10 171068

40 100 0 0 1 528075 0
5 20 100 8 148075 6 10006 7 162017 10 66092

40 100 7 1045 8 12050 7 48036 10 4018
60 100 6 1039 7 61003 1 362040 8 1030
80 100 6 1083 6 10023 1 0010 8 1057

100 100 4 11032 5 41025 0 7 21015
6 20 300 0 0 1 755045 5 196091
7 20 100 10 0042 10 0008 10 59039 10 0008

40 100 10 0059 10 0042 1 325052 10 0020
60 100 10 1033 10 0044 0 10 0045
80 100 10 1003 10 0079 0 10 1029

100 100 10 3023 10 2007 0 10 1039
8 20 100 1 10055 1 37067 2 303065 2 6066
9 20 100 10 0001 10 0000 10 27016 10 0004

40 100 10 0054 10 0008 2 258060 10 0020
60 100 10 0002 10 0000 0 10 0025
80 100 10 0014 10 0011 0 10 0037

100 100 10 0016 10 0012 0 10 0060
10 20 100 7 56042 7 20028 8 422023 9 75017

40 100 2 16046 2 1048 1 115044 6 247068
60 100 1 0044 1 62033 0 3 69084
80 100 0 0 0 1 453011

implementation only missed seven optimal solutions out
of 322.

The two enhancements that we developed to speed up
this decomposition are both important. The strategies to
decrease the number of variables are effective on instances
having large W . For example, for gcut04 they reduce the

Figure 5. Evolution of the y-check algorithm in the first two seconds of computation.
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number of variables from 1,640 to just 424. The MILP-
based heuristic is also successful in a few important cases.
For example, it finds the optimal solution of cgcut03 in just
a few seconds.

In Figure 5 and Table 6 we show some insight about two
of the most innovative components of BLUE, namely, the
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17 y-check algorithm and the procedure to lift the Benders’

cuts. Considering the overall run on the 560 instances, the
y-check algorithm has been invoked 2,490 times by the
exact algorithms of §5.2. It terminated within the given iter-
ation limit for 96.6% of the cases. In Figure 5 we show the
evolution, in terms of percentage of instances solved, for
the first two seconds of computation. In just 0.01 seconds
the algorithm solves 40% of the instances. This is caused
by the fact that the algorithm is very quick in finding a fea-
sible solution, if any: it takes just 0.01 seconds on average
and 0.24 in the worst case to prove feasibility. Then the
task becomes harder, but still the algorithm needs just 0.8
seconds on average to prove the infeasibility of an instance.
Being the problem is strongly NP-hard, it is not surpris-
ing that a few y-check instances remain unsolved after one
minute. This behavior motivated the choice of the maxi-
mum number of iterations given to the y-check algorithm,
which is quite small inside the heuristic used to compute
U2 (2 · 105, see §5.1), where the aim is to find feasible
solutions, and much larger inside the exact B&B for the
SPP(L) (2 · 107, see §5.2), where proving infeasibility is
also important.

In Table 6, the impact of the procedures to combine and
lift the Bender’s cuts is evaluated on a few successful exam-
ples, taken from instances in the 10 classes that were not
solved to proven optimality by previously published algo-
rithms. We compare the results obtained by a version of
BLUE that uses the Benders’ cuts (20), another version that
uses the combinatorial Benders’ (21) obtained by the proce-
dure of §4.1, and the final version that uses the lifted com-
binatorial Benders’ (33). For each case and each instance
we report the optimality of the solution (opt), the compu-
tational time (sec), the total time spent inside the MILP of
the decomposition (sec MILP), the number of added cuts
(num cuts), the number of calls to the y-check algorithm
(num y-ch.) and the total seconds it elapsed (sec y-ch.).

The standard cuts solve three out of six instances. The
combinatorial cuts do not increase the number of optimal
solutions, but can decrease consistently the computational
effort, as happens for example in instance 05-40-01, where
the time decreases from 610 to 17 seconds. The lifted cuts
improve consistently the previous configurations, solving
all instances to optimality and decreasing the computational
effort. The cuts are efficient in both strengthening the for-
mulation, and thus reducing sec MILP, and in reducing the
number of calls and the time spent for problem y-check.

7. Conclusions
We proposed an innovative algorithm for the exact solu-
tion of the strip packing problem, which is based on a
Benders’ decomposition and is enriched with several tai-
lored techniques. We proved that the slave problem arising
in the decomposition is difficult, but solved it with an algo-
rithm that is efficient in practice. We improved the standard
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Benders’ cuts by using the concept of combinatorial Ben-
ders’ cuts and a new lifting procedure, which is very effec-
tive on the difficult instances.

The proposed algorithm consistently outperforms the
previously published approaches. It provides a larger num-
ber of optimal solutions in similar or smaller computational
effort, and solves for the first time to proven optimality
instances that were open for decades.

The general framework that we propose can be adapted
to solve other two-dimensional packing problem, such as
the two-dimensional knapsack and the two-dimensional
bin packing. It can be also generalized to higher dimen-
sional problems. These represent interesting future research
directions.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2013.1248.
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