Book Chapter
Billington, Elizabeth J., Lindner, Charles C., Meszka, Mariusz and Rosa, Alexander (2013). Extra 2-perfect twofold 6-cycle systems. Recent results in designs and graphs. A tribute to Lucia Gionfriddo. (pp. 135-150) Napoli, Italy: Aracne Editrice.
Journal Articles
Billington, Elizabeth J., Kucukcifci, Selda, Lindner, C. C. and Meszka, Mariusz (2014). Squashing minimum coverings of 6-cycles into minimum coverings of triples. Aequationes Mathematicae, 89 (4), 1223-1239. doi: 10.1007/s00010-014-0312-4
Demirkale, Fatih, Donovan, Diane and Lindner, C. C. (2013). Simple 2-fold (3n, n, 3) group divisible designs having a prescribed number of triples in common. Electronic Notes in Discrete Mathematics, 40, 107-111. doi: 10.1016/j.endm.2013.05.020
Billington, Elizabeth J., Khodar, Abdollah and Lindner, C. C. (2012). Complete sets of metamorphoses: Paired stars into 4-cycles. JCMCC: Journal of Combinatorial Mathematics and Combinatorial Computing, 80, 457-466.
Billington, Elizabeth J., Donovan, Diane, Lefevre, James, McCourt, Thomas and Lindner, C. C. (2011). The triangle intersection problem for nested Steiner triple systems. Australasian Journal of Combinatorics, 51, 221-233.
Billington, Elizabeth J., Lindner, C. C. and Meszka, Mariusz (2011). Twofold 2-perfect bowtie systems with an extra property. Aequationes Mathematicae, 82 (1-2), 143-153. doi: 10.1007/s00010-011-0075-0
Billington, Elizabeth J., Hoffman, D.G., Lindner, C. C. and Meszka, Mariusz (2011). Almost resolvable minimum coverings of complete graphs with 4-cycles. Australasian Journal of Combinatorics, 50, 73-85.
Billington, Elizabeth J., Dejter, Italo J., Hoffman, D. G. and Lindner, C. C. (2011). Almost Resolvable Maximum Packings of Complete Graphs with 4-Cycles. Graphs and Combinatorics, 27 (2), 161-170. doi: 10.1007/s00373-010-0967-0
Adams, Peter, Billington, Elizabeth J., Hoffman, D. G. and Lindner, C. C. (2010). The generalized almost resolvable cycle system problem. Combinatorica, 30 (6), 617-625. doi: 10.1007/s00493-010-2525-z
Billington, Elizabeth J., Kucukcifci, Selda, Yazici, Emine Sule and Lindner, Curt (2009). Embedding 4-cycle systems into octagon triple systems. Utilitas Mathematica, 79, 99-106.
Billington, Elizabeth J. and Lindner, C. C. (2009). Embedding 5-cycle systems into pentagon triple systems. Discrete Mathematics, 309 (14), 4828-4834. doi: 10.1016/j.disc.2008.06.035
Billington, E. J., Yazici, E. S. and Lindner, C. C. (2007). The triangle intersection problem for K4 - e designs. Utilitas Mathematica, 73, 3-21.
Billington, E J and Lindner, C. C. (2006). Perfect triple configurations from subgraphs of K4 : the remaining cases. Bulletin of the ICA, 47, 77-90.
Billington, E. J., Lindner, C and Rosa, A. (2005). Lambda-fold complete graph decompositions into perfect four-triple configurations. Australasian Journal of Combinatorics, 32, 323-330.
Adams, P., Billington, E. J. and Lindner, C. C. (2002). The number of 6-cycles in 2-factorizations of Kn, n odd. Journal of Combinatorial Mathematics and Combinatorial Computing, 41, 223-243.
Billington, EJ and Lindner, CC (2001). The metamorphosis of lambda-fold 4-wheel systems into lambda-fold 4-cycle systems. Utilitas Mathematica, 59, 215-235.
Adams, P., Billington, E. J., Dejter, I. J. and Lindner, C. C. (2000). The number of 4-cycles in 2-factorizations of K2n minus a 1-factor. Discrete Mathematics, 220 (Nos 1-3 in one), 1-11. doi: 10.1016/S0012-365X(99)00377-5
Lindner, C. C. and Street, A. P. (2000). The metamorphosis of l-fold block designs with block size four into l-fold 4-cycle systems. Bulletin of the Institute of Combinatorics and its Applications, 28, 7-18.
Billington, Elizabeth J., Gionfriddo, M. and Lindner, C. C. (1997). The intersection problem for K4 - E designs. Journal of Statistical Planning and Inference, 58 (1), 5-27.
Billington, EJ, Gionfriddo, M and Lindner, CC (1997). The intersection problem for K_4-e designs. Journal of Statistical Planning And Inference, 58 (1), 5-27. doi: 10.1016/S0378-3758(96)00056-0
Bryant, DE and Lindner, CC (1996). 2-perfect m-cycle systems can be equationally defined for m=3, 5, and 7 only. Algebra Universalis, 35 (1), 1-7. doi: 10.1007/BF01190966
Bryant, DE and Lindner, CC (1996). 2-perfect directed m-cycle systems can be equationally defined for m=3,4, and 5 only. Journal of Statistical Planning And Inference, 56 (1), 57-63. doi: 10.1016/S0378-3758(96)00009-2