Skip to menu Skip to content Skip to footer
The University of Queensland
  • Study
  • Research
  • Partners and community
  • About
School of Mathematics and Physics
  • Home
  • About
    • About
    • Our people
    • Equity, diversity and inclusion
    • News
    • Events
    • Alumni
  • Mathematics
    • Mathematics
    • Mathematics people
    • Mathematics courses
  • Physics
    • Physics
    • Physics people
    • Physics courses
  • Study
    • Study
    • Undergraduate
    • Honours
    • Postgraduate coursework
    • Higher degree by research
    • Careers and employability
  • Research
    • Research
    • Research centres and groups
    • Industry engagement
    • Visiting fellowships
  • Outreach
    • Outreach
    • Pitch Drop experiment
    • Junior Physics Odyssey
    • Senior Mathematics Study Days
    • Queensland Mathematics Summer School
    • School seminars and colloquia
  • Current students
    • Current students
    • Academic advisers
    • Course lists
    • Scholarships and prizes
    • Support for HDR candidates
    • Summer & Winter Research Programs
    • Inclusivity Information
    • Quiet class trial
  • Contact
    • Contact
    • Staff directory
  • Study
  • Research
  • Partners and community
  • About
  • UQ home
  • News
  • Events
  • Give
  • Contact
  • UQ home
  • News
  • Events
  • Give
  • Contact
School of Mathematics and Physics
  • Home
  • About
    • Our people
    • Equity, diversity and inclusion
    • News
    • Events
    • Alumni
  • Mathematics
    • Mathematics people
    • Mathematics courses
  • Physics
    • Physics people
    • Physics courses
  • Study
    • Undergraduate
    • Honours
    • Postgraduate coursework
    • Higher degree by research
    • Careers and employability
  • Research
    • Research centres and groups
    • Industry engagement
    • Visiting fellowships
  • Outreach
    • Pitch Drop experiment
    • Junior Physics Odyssey
    • Senior Mathematics Study Days
    • Queensland Mathematics Summer School
    • School seminars and colloquia
  • Current students
    • Academic advisers
    • Course lists
    • Scholarships and prizes
    • Support for HDR candidates
    • Summer & Winter Research Programs
    • Inclusivity Information
    • Quiet class trial
  • Contact
    • Staff directory

Dr Jan Chabrowski

Honorary Associate Professor
School of Mathematics and Physics
jhc@maths.uq.edu.au

Personal page

Associate Professor Jan Chabrowski's personal page

Publications

Book (1)
Journal Articles (73)

Book

Chabrowski, J. H. (1999). Weak Convergence Methods for Semilinear Elliptic Equations. Singapore: World Scientific.

Journal Articles

Chabrowski, J. (2018). On bi-nonlocal problem for elliptic equations with Neumann boundary conditions. Journal d'Analyse Mathematique, 134 (1), 303-334. doi: 10.1007/s11854-018-0011-5
Chabrowski, Jan and Tintarev, Cyril (2014). An elliptic problem with an indefinite nonlinearity and a parameter in the boundary condition. Nonlinear Differential Equations and Applications, 21 (4), 519-540. doi: 10.1007/s00030-013-0256-8
Chabrowski, Jan (2014). On a singular nonlinear Neumann problem. Opuscula Mathematica, 34 (2), 271-290. doi: 10.7494/OpMath.2014.34.2.271
Chabrowski, Jan (2012). Inhomogeneous Neumann problem with critical Sobolev exponent. Advances in Nonlinear Analysis, 1 (3), 221-255. doi: 10.1515/anona-2012-0004
Chabrowski, J. H. (2011). On the existence of a solution to a class of variational inequalities. Ricerche di Matematica, 60 (2), 333-350. doi: 10.1007/s11587-011-0110-4
Chabrowski, Jan H. and Grotowski, Joseph F. (2011). On radial solutions of the Schrodinger type equation. Advanced Nonlinear Studies, 11 (2), 295-310. doi: 10.1515/ans-2011-0204
Chabrowski, J. and Tintarev, K. (2011). Ground state for the Schroedinger operator with the weighted Hardy potential. International Journal of Differential Equations, 2011 (358087) 358087, 1-26. doi: 10.1155/2011/358087
Chabrowski, Jan (2011). On the Neumann problem for systems of elliptic equations involving homogeneous nonlinearities of a critical degree. Colloquium Mathematicum, 125 (1), 115-127. doi: 10.4064/cm125-1-8
Chabrowski, J., Peral, I. and Ruf, B. (2010). On an eigenvalue problem involving the Hardy potential. Communications in Contemporary Mathematics, 12 (6), 953-975. doi: 10.1142/S0219199710004044
Chabrowski, J. (2010). On the Neumann problem with multiple critical nonlinearities. Complex Variables and Elliptic Equations, 55 (5-6), 501-524. doi: 10.1080/17476930903275961
Chabrowski, J. and Costa, D. G. (2010). On existence of positive solutions for a class of Caffarelli-Kohn-Nirenberg type equations. Colloquium Mathematicum, 120 (1), 43-62. doi: 10.4064/cm120-1-4
Chabrowski, Jan H. (2010). On the Neumann problem involving the Hardy - Sobolev potentials. Annals of the University of Bucharest (Mathematical Series), LIX (2), 209-226.
Chabrowski, Jan, Szulkin, Andrzej and Willem, Michel (2009). Schrodinger equation with multiparticle potential and critical nonlinearity. Topological Methods in Nonlinear Analysis, 34 (2), 201-211. doi: 10.12775/TMNA.2009.038
Chabrowski, Jan Henryk (2009). On the Neumann problem with singular and superlinear nonlinearities. Communications in Applied Analysis, 13 (3), 327-340.
Chabrowski, J. (2008). The critical neumann problem for semilinear elliptic equations with the hardy potential. Advances in Differential Equations, 13 (3-4), 323-348.
Chabrowski, J. (2008). On an obstacle problem for degenerate elliptic operators involving the critical Sobolev exponent. Journal of Fixed Point Theory and Applications, 4 (1), 137-150. doi: 10.1007/s11784-007-0082-5
Chabrowski, J. H. (2008). Multiple solutions for a nonlinear Neumann problem involving a critical Sobolev exponent. Note di Matematica, 28 (1), 15-28. doi: 10.1285/i15900932v28n1p15
Chabrowski, J. H. (2008). On a critical Neumann problem with a perturbation of lower order. Acta Mathematicae Applicatae Sinica, English Series, 24 (3), 441-452. doi: 10.1007/s10255-008-8038-5
Chabrowski, J. H. and Costa, D. G. (2008). On a class of Schrodinger-Type equations with indefinite weight functions. Communications in Partial Differential Equations, 33 (8), 1368-1393. doi: 10.1080/03605300601088880
Chabrowski, J. (2007). On a singular Neumann problem for semilinear elliptic equations with critical Sobolev exponent and lower order terms. Journal of Fixed Point Theory and Applications, 2 (2), 333-352. doi: 10.1007/s11784-007-0036-3
Chabrowski, Jan (2007). The Neumann problem for semilinear elliptic equations with critical Sobolev exponent. Milan Journal of Mathematics, 75 (1), 197-224. doi: 10.1007/s00032-006-0065-1
Chabrowski J. (2007). The critical Neumann problem for semilinear elliptic equations with concave perturbations. Ricerche di Matematica, 56 (2), 297-319. doi: 10.1007/s11587-007-0018-1
Chabrowski, J and Wang, ZQ (2007). Exterior nonlinear Neumann problem. Nodea-nonlinear Differential Equations And Applications, 13 (5-Jun), 683-697. doi: 10.1007/s00030-006-4040-x
Chabrowski, J (2007). On the Neumann problem with the Hardy-Sobolev potential. Annali Di Matematica Pura Ed Applicata, 186 (4), 703-719. doi: 10.1007/s10231-006-0027-9
Cao, Daomin and Chabrowski, Jan (2007). Critical Neumann problem with competing hardy potentials. Revista Matematica Complutense, 20 (2), 309-338.
Chabrowski, J. H., FILIPPAS, S. and TERTIKAS, A. (2006). Positive solutions of a Neumann problem with competing critical nonlinearities. Topological Methods In Nonlinear Analysis, 28 (1), 1-31.
Chabrowski, J. (2006). On the exterior Neumann problem with critical growth. Differential and Integral Equations, 19 (1), 75-90.
Chabrowski, J. and Willem, M. (2005). On multiple solutions of the exterior neumann problem involving critical sobolev exponent. Topological Methods In Nonlinear Analysis, 26 (1), 89-108. doi: 10.12775/TMNA.2005.026
Chabrowski, J. and Szulkin, A. (2005). On the Schrodinger equation involving a critical Sobolev exponent and magnetic field. Topological Methods In Nonlinear Analysis, 25 (1), 3-21. doi: 10.12775/TMNA.2005.001
Chabrowski, J. and Yang, J. F. (2005). Sharp Sobolev inequality involving a critical nonlinearity on a boundary. Topological Methods In Nonlinear Analysis, 25 (1), 135-153. doi: 10.12775/TMNA.2005.006
Chabrowski, J. and Willem, M. (2005). Hardy's inequality on exterior domains. Proceedings Of The American Mathematical Society, 134 (4), 1019-1022. doi: 10.1090/S0002-9939-05-08407-8
Chabrowski, J and Fu, YQ (2005). Existence of solutions for p(x)-Laplacian problems on a bounded domain. Journal of Mathematical Analysis And Applications, 306 (2), 604-618. doi: 10.1016/j.jmaa.2004.10.028
Chabrowski, Jan and Yang, Jianfu (2005). On the Neumann problem with combined nonlinearities. Annales Polonici Mathematici, 85 (3), 239-250. doi: 10.4064/ap85-3-5
Chabrowski, J, Drabek, P and Tonkes, E (2005). Asymptotic bifurcation results for quasilinear elliptic operators. Glasgow Mathematical Journal, 47 (1), 55-67. doi: 10.1017/S001708950400206X
Chabrowski, J. H. and Tintarev, K. (2005). An Elliptic Neumann Problem with Subcritical Nonlinearity. Bulletin of the Polish Academy of Sciences, 53 (1), 7-16.
Chabrowski, J. H. and Girao, P.M. (2004). On the exterior Neumann problem involving the critical Sobolev exponent. Topological Methods in Nonlinear Analysis, 23 (1), 33-43.
Chabrowski, J (2004). On the nonlinear Neumann problem involving the critical Sobolev exponent on the boundary. Journal of Mathematical Analysis And Applications, 290 (2), 605-619. doi: 10.1016/j.jmaa.2003.10.036
Chabrowski, J. H. (2004). On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential. Revista Mathematica, 17 (1), 195-227.
Chabrowski, J. H. (2004). On multiple solutions of the Neumann problem involving the critical Sobolev exponent. Colloquium Mathematicum, 101 (2), 203-220. doi: 10.4064/cm101-2-5
Chabrowski, J. H. and Yang, J. (2003). Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent. Rendiconti del Seminario Matematico dell'Universita di Padova, 110, 1-23.
Chabrowski, J. H. and Tonkes, E. J. (2003). On the nonlinear Neumann problem with critical and supercritical nonlinearities. Dissertationes Mathematicae, 417, 1-59.
Chabrowski, J. H. and Tonkes, E. J. (2003). On elliptic systems pertaining to the Schrdinger equation. Annales Polonici Mathematici, 81 (3), 273-294.
Chabrowski, J. H. and Ruf, B. (2003). On the critical Neumann problem with weight in exterior domains. Nonlinear Analysis, 54 (1), 143-163. doi: 10.1016/S0362-546X(03)00059-2
Chabrowski, J. and Willem, M. (2002). Least energy solutions of a critical Neumann problem with a weight. Calculus of Variations and Partial Differential Equations, 15 (4), 421-431. doi: 10.1007/s00526-002-0101-0
Chabrowski, Jan and Szulkin, Andrzej (2002). On a semilinear Schrodinger equation with critical Sobolev exponent. Proceedings of the American Mathematical Society, 130 (1), 85-93. doi: 10.1090/S0002-9939-01-06143-3
Chabrowski, J. and Drabek, P (2002). On positive solutions of nonlinear elliptic equations involving concave and critical nonlinearities. Studia Mathematica, 151 (1), 67-85. doi: 10.4064/sm151-1-5
Chabrowski, J. H. (2002). Mean curvature and least energy solutions for the critical Neumann problem with weight. Unione Matematica Italiana. Bollettino B, 5-B (3), 715-733.
Chabrowski, J. H. (2002). On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity. Bulletin of the Polish Academy of Sciences Mathematics, 50 (3), 323-333.
Chabrowski, J. H. and Marcos do O, J. (2002). On some fourth-order semilinear elliptic problems in RN. Nonlinear Analysis, 49 (6), 861-884. doi: 10.1016/S0362-546X(01)00144-4
Chabrowski, J. H. and Girao, P.M. (2002). Symmetric solutions of the Neumann problem involving a critical Sobolev exponent. Topological Methods in Nonlinear Analysis, 19, 1-27.
Chabrowski, J. H. and Marcos Bezzera Do O, J. (2002). On semilinear elliptic equations involving concave and convex nonlinearities. Mathematische Nachrichten, 233-234 (1), 55-76. doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.3.CO;2-I
Chabrowski, J. H. and Yan, S. (2002). On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity. Colloquium Mathematicum, 94 (1), 141-150. doi: 10.4064/cm94-1-10
Chabrowski, J. H. and Yang, J. (2001). On the Neumann problem for an elliptic system of equations involving the critical Sobolev exponent. Colloquium Mathematicum, 90 (1), 19-35. doi: 10.4064/cm90-1-2
Chabrowski, J. H., Watson, P. and Yang, J. (2001). On shape and multiplicity of solutions for a singularly perturbed Neuman problem. Annales Polonici Mathematici, 77 (2), 119-159.
Chabrowski, J. H. and Girao, P.M. (2001). On nonlinear Neumann problem and sharp weighted Sobolev inequalities.. Colloquium Mathematicum, 88 (2), 193-213. doi: 10.4064/cm88-2-3
Chabrowski, J. H. and Yang, Jianfu (2000). Multiple semiclassical solutions of the Schrodinger equation involving a critical Sobolev exponent. Portugaliae Mathematica, 57 (3), 273-284.
Chabrowski, J. H. and Yan, S. (1999). Concentration of solutions for nonlinear elliptic problem with nearly critical exponent. Topological Methods in Nonlinear Analysis, 13 (2), 199-233.
Chabrowski, Jan and Yang, Jianfu (1998). On Schrodinger Equation with Periodic Potential and Critical Sobolev Exponent. Topological Methods in Nonlinear Analysis, 12 (2), 245-261.
Chabrowski, J. and Yang, Jianfu (1997). Existence theorems for elliptic equations involving supercritical sobolev exponent. Advances in Differential Equations, 2 (2), 231-256. doi: 10.57262/ade/1366809215
Chabrowski, J. and Yang, Jianftj (1997). Nonnegative solutions for semilinear biharmonic equations in rn. Analysis (Germany), 17 (1), 35-60. doi: 10.1524/anly.1997.17.1.35
Cao, Daomin and Chabrowski, J. (1996). On the number of positive solutions for nonhomogeneous semilinear elliptic problem. Advances in Differential Equations, 1 (5), 753-772.
Chabrowski J. and Lions P.L. (1995). On multiple solutions for the nonhomogeneous p-Laplacian with a critical Sobolev exponent. Differential and Integral Equations, 8 (4), 705-716.
Chabrowski J. (1995). Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. Calculus of Variations and Partial Differential Equations, 3 (4), 493-512. doi: 10.1007/BF01187898
Chabrowski, Jan and Kewei, Zhang (1993). On variational approach to photometric stereo. Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 10 (4), 363-375. doi: 10.1016/S0294-1449(16)30206-2
Chabrowski J. (1992). On the existence of G-symmetric entire solutions for semilinear elliptic equations. Rendiconti del Circolo Matematico di Palermo, 41 (3), 413-440. doi: 10.1007/BF02848946
Chabrowski, J. H. and Thompson, H. B. (1988). Singular and quasi-bounded functions associated with the heat equation. Mathematische Zeitschrift, 199 (1), 81-98. doi: 10.1007/BF01160211
Chabrowski J.H. (1988). On Solvability of Boundary Value Problem for Elliptic Equations with Bitsadze-Samarskiĭ Condition. International Journal of Mathematics and Mathematical Sciences, 11 (1), 101-113. doi: 10.1155/S0161171288000158
Chabrowski J. (1988). On the existence of solutions of the Dirichlet problem for nonlinear elliptic equations. Rendiconti del Circolo Matematico di Palermo, 37 (1), 65-87. doi: 10.1007/BF02844268
Chabrowski J. (1984). On non-local problems for parabolic equations. Nagoya Mathematical Journal, 93, 109-131. doi: 10.1017/S0027763000020754
Chabrowski J. and Thompson H.B. (1983). On the boundary values of the solutions of linear elliptic equations. Bulletin of the Australian Mathematical Society, 27 (1), 1-30. doi: 10.1017/S0004972700011461
Chabrowski J. (1982). Representation Theorems for Parabolic Systems. Journal of the Australian Mathematical Society, 32 (2), 246-288. doi: 10.1017/S1446788700024587
Chabrowski J. and Vyborny R. (1982). Maximum principle for non-linear degenerate equations of the parabolic type. Bulletin of the Australian Mathematical Society, 25 (2), 251-263. doi: 10.1017/S0004972700005268
Chabrowski, J and Thompson, B (1981). On the Behavior Near the Boundary of Solutions of a Semi-Linear Partial-Differential Equation of Elliptic Type. Journal of the Australian Mathematical Society Series A-Pure Mathematics and Statistics, 31 (DEC), 405-414.

Areas of research

Geometric and nonlinear analysis
Pure mathematics
Australian Aboriginal Flag Torres Strait Islander Flag UQ acknowledges the Traditional Owners and their custodianship of the lands on which UQ is situated. — Reconciliation at UQ
  • Media

    • Media team contacts
    • Find a subject matter expert
    • UQ news
  • Working at UQ

    • Current staff
    • Careers at UQ
    • Strategic plan
    • Staff support
    • IT support for staff
  • Current students

    • my.UQ
    • Programs and courses
    • Key dates
    • Student support
    • IT support for students
  • Library

    • Library
    • Locations and hours
    • Library services
    • Research tools
  • Contact

    • Contact UQ
    • Find a researcher
    • Faculties, schools, institutes and centres
    • Divisions and departments
    • Campuses, maps and transport
    • Media team contacts
    • Find a subject matter expert
    • UQ news
    • Current staff
    • Careers at UQ
    • Strategic plan
    • Staff support
    • IT support for staff
    • my.UQ
    • Programs and courses
    • Key dates
    • Student support
    • IT support for students
    • Library
    • Locations and hours
    • Library services
    • Research tools
    • Contact UQ
    • Find a researcher
    • Faculties, schools, institutes and centres
    • Divisions and departments
    • Campuses, maps and transport
Web login
  • © The University of Queensland
  • ABN: 63 942 912 684
  • CRICOS: 00025B
  • TEQSA: PRV12080
  • Privacy and terms of use
  • Accessibility
  • Right to information
  • Feedback