Dr Jan Chabrowski
Honorary Associate Professor
School of Mathematics and Physics
Personal page
Book
Chabrowski, J. H. (1999). Weak Convergence Methods for Semilinear Elliptic Equations. Singapore: World Scientific.
Journal Articles
Chabrowski, J. (2018). On bi-nonlocal problem for elliptic equations with Neumann boundary conditions. Journal d'Analyse Mathematique, 134 (1), 303-334. doi: 10.1007/s11854-018-0011-5
Chabrowski, Jan and Tintarev, Cyril (2014). An elliptic problem with an indefinite nonlinearity and a parameter in the boundary condition. Nonlinear Differential Equations and Applications, 21 (4), 519-540. doi: 10.1007/s00030-013-0256-8
Chabrowski, Jan (2014). On a singular nonlinear Neumann problem. Opuscula Mathematica, 34 (2), 271-290. doi: 10.7494/OpMath.2014.34.2.271
Chabrowski, Jan (2012). Inhomogeneous Neumann problem with critical Sobolev exponent. Advances in Nonlinear Analysis, 1 (3), 221-255. doi: 10.1515/anona-2012-0004
Chabrowski, J. H. (2011). On the existence of a solution to a class of variational inequalities. Ricerche di Matematica, 60 (2), 333-350. doi: 10.1007/s11587-011-0110-4
Chabrowski, Jan H. and Grotowski, Joseph F. (2011). On radial solutions of the Schrodinger type equation. Advanced Nonlinear Studies, 11 (2), 295-310. doi: 10.1515/ans-2011-0204
Chabrowski, J. and Tintarev, K. (2011). Ground state for the Schroedinger operator with the weighted Hardy potential. International Journal of Differential Equations, 2011 (358087) 358087, 1-26. doi: 10.1155/2011/358087
Chabrowski, Jan (2011). On the Neumann problem for systems of elliptic equations involving homogeneous nonlinearities of a critical degree. Colloquium Mathematicum, 125 (1), 115-127. doi: 10.4064/cm125-1-8
Chabrowski, J., Peral, I. and Ruf, B. (2010). On an eigenvalue problem involving the Hardy potential. Communications in Contemporary Mathematics, 12 (6), 953-975. doi: 10.1142/S0219199710004044
Chabrowski, J. (2010). On the Neumann problem with multiple critical nonlinearities. Complex Variables and Elliptic Equations, 55 (5-6), 501-524. doi: 10.1080/17476930903275961
Chabrowski, J. and Costa, D. G. (2010). On existence of positive solutions for a class of Caffarelli-Kohn-Nirenberg type equations. Colloquium Mathematicum, 120 (1), 43-62. doi: 10.4064/cm120-1-4
Chabrowski, Jan H. (2010). On the Neumann problem involving the Hardy - Sobolev potentials. Annals of the University of Bucharest (Mathematical Series), LIX (2), 209-226.
Chabrowski, Jan, Szulkin, Andrzej and Willem, Michel (2009). Schrodinger equation with multiparticle potential and critical nonlinearity. Topological Methods in Nonlinear Analysis, 34 (2), 201-211. doi: 10.12775/TMNA.2009.038
Chabrowski, Jan Henryk (2009). On the Neumann problem with singular and superlinear nonlinearities. Communications in Applied Analysis, 13 (3), 327-340.
Chabrowski, J. (2008). The critical neumann problem for semilinear elliptic equations with the hardy potential. Advances in Differential Equations, 13 (3-4), 323-348.
Chabrowski, J. (2008). On an obstacle problem for degenerate elliptic operators involving the critical Sobolev exponent. Journal of Fixed Point Theory and Applications, 4 (1), 137-150. doi: 10.1007/s11784-007-0082-5
Chabrowski, J. H. (2008). Multiple solutions for a nonlinear Neumann problem involving a critical Sobolev exponent. Note di Matematica, 28 (1), 15-28. doi: 10.1285/i15900932v28n1p15
Chabrowski, J. H. (2008). On a critical Neumann problem with a perturbation of lower order. Acta Mathematicae Applicatae Sinica, English Series, 24 (3), 441-452. doi: 10.1007/s10255-008-8038-5
Chabrowski, J. H. and Costa, D. G. (2008). On a class of Schrodinger-Type equations with indefinite weight functions. Communications in Partial Differential Equations, 33 (8), 1368-1393. doi: 10.1080/03605300601088880
Chabrowski, J. (2007). On a singular Neumann problem for semilinear elliptic equations with critical Sobolev exponent and lower order terms. Journal of Fixed Point Theory and Applications, 2 (2), 333-352. doi: 10.1007/s11784-007-0036-3
Chabrowski, Jan (2007). The Neumann problem for semilinear elliptic equations with critical Sobolev exponent. Milan Journal of Mathematics, 75 (1), 197-224. doi: 10.1007/s00032-006-0065-1
Chabrowski J. (2007). The critical Neumann problem for semilinear elliptic equations with concave perturbations. Ricerche di Matematica, 56 (2), 297-319. doi: 10.1007/s11587-007-0018-1
Chabrowski, J and Wang, ZQ (2007). Exterior nonlinear Neumann problem. Nodea-nonlinear Differential Equations And Applications, 13 (5-Jun), 683-697. doi: 10.1007/s00030-006-4040-x
Chabrowski, J (2007). On the Neumann problem with the Hardy-Sobolev potential. Annali Di Matematica Pura Ed Applicata, 186 (4), 703-719. doi: 10.1007/s10231-006-0027-9
Cao, Daomin and Chabrowski, Jan (2007). Critical Neumann problem with competing hardy potentials. Revista Matematica Complutense, 20 (2), 309-338.
Chabrowski, J. H., FILIPPAS, S. and TERTIKAS, A. (2006). Positive solutions of a Neumann problem with competing critical nonlinearities. Topological Methods In Nonlinear Analysis, 28 (1), 1-31.
Chabrowski, J. (2006). On the exterior Neumann problem with critical growth. Differential and Integral Equations, 19 (1), 75-90.
Chabrowski, J. and Willem, M. (2005). On multiple solutions of the exterior neumann problem involving critical sobolev exponent. Topological Methods In Nonlinear Analysis, 26 (1), 89-108. doi: 10.12775/TMNA.2005.026
Chabrowski, J. and Szulkin, A. (2005). On the Schrodinger equation involving a critical Sobolev exponent and magnetic field. Topological Methods In Nonlinear Analysis, 25 (1), 3-21. doi: 10.12775/TMNA.2005.001
Chabrowski, J. and Yang, J. F. (2005). Sharp Sobolev inequality involving a critical nonlinearity on a boundary. Topological Methods In Nonlinear Analysis, 25 (1), 135-153. doi: 10.12775/TMNA.2005.006
Chabrowski, J. and Willem, M. (2005). Hardy's inequality on exterior domains. Proceedings Of The American Mathematical Society, 134 (4), 1019-1022. doi: 10.1090/S0002-9939-05-08407-8
Chabrowski, J and Fu, YQ (2005). Existence of solutions for p(x)-Laplacian problems on a bounded domain. Journal of Mathematical Analysis And Applications, 306 (2), 604-618. doi: 10.1016/j.jmaa.2004.10.028
Chabrowski, Jan and Yang, Jianfu (2005). On the Neumann problem with combined nonlinearities. Annales Polonici Mathematici, 85 (3), 239-250. doi: 10.4064/ap85-3-5
Chabrowski, J, Drabek, P and Tonkes, E (2005). Asymptotic bifurcation results for quasilinear elliptic operators. Glasgow Mathematical Journal, 47 (1), 55-67. doi: 10.1017/S001708950400206X
Chabrowski, J. H. and Tintarev, K. (2005). An Elliptic Neumann Problem with Subcritical Nonlinearity. Bulletin of the Polish Academy of Sciences, 53 (1), 7-16.
Chabrowski, J. H. and Girao, P.M. (2004). On the exterior Neumann problem involving the critical Sobolev exponent. Topological Methods in Nonlinear Analysis, 23 (1), 33-43.
Chabrowski, J (2004). On the nonlinear Neumann problem involving the critical Sobolev exponent on the boundary. Journal of Mathematical Analysis And Applications, 290 (2), 605-619. doi: 10.1016/j.jmaa.2003.10.036
Chabrowski, J. H. (2004). On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential. Revista Mathematica, 17 (1), 195-227.
Chabrowski, J. H. (2004). On multiple solutions of the Neumann problem involving the critical Sobolev exponent. Colloquium Mathematicum, 101 (2), 203-220. doi: 10.4064/cm101-2-5
Chabrowski, J. H. and Yang, J. (2003). Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent. Rendiconti del Seminario Matematico dell'Universita di Padova, 110, 1-23.
Chabrowski, J. H. and Tonkes, E. J. (2003). On the nonlinear Neumann problem with critical and supercritical nonlinearities. Dissertationes Mathematicae, 417, 1-59.
Chabrowski, J. H. and Tonkes, E. J. (2003). On elliptic systems pertaining to the Schrdinger equation. Annales Polonici Mathematici, 81 (3), 273-294.
Chabrowski, J. H. and Ruf, B. (2003). On the critical Neumann problem with weight in exterior domains. Nonlinear Analysis, 54 (1), 143-163. doi: 10.1016/S0362-546X(03)00059-2
Chabrowski, J. and Willem, M. (2002). Least energy solutions of a critical Neumann problem with a weight. Calculus of Variations and Partial Differential Equations, 15 (4), 421-431. doi: 10.1007/s00526-002-0101-0
Chabrowski, Jan and Szulkin, Andrzej (2002). On a semilinear Schrodinger equation with critical Sobolev exponent. Proceedings of the American Mathematical Society, 130 (1), 85-93. doi: 10.1090/S0002-9939-01-06143-3
Chabrowski, J. and Drabek, P (2002). On positive solutions of nonlinear elliptic equations involving concave and critical nonlinearities. Studia Mathematica, 151 (1), 67-85. doi: 10.4064/sm151-1-5
Chabrowski, J. H. (2002). Mean curvature and least energy solutions for the critical Neumann problem with weight. Unione Matematica Italiana. Bollettino B, 5-B (3), 715-733.
Chabrowski, J. H. (2002). On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity. Bulletin of the Polish Academy of Sciences Mathematics, 50 (3), 323-333.
Chabrowski, J. H. and Marcos do O, J. (2002). On some fourth-order semilinear elliptic problems in RN. Nonlinear Analysis, 49 (6), 861-884. doi: 10.1016/S0362-546X(01)00144-4
Chabrowski, J. H. and Girao, P.M. (2002). Symmetric solutions of the Neumann problem involving a critical Sobolev exponent. Topological Methods in Nonlinear Analysis, 19, 1-27.
Chabrowski, J. H. and Marcos Bezzera Do O, J. (2002). On semilinear elliptic equations involving concave and convex nonlinearities. Mathematische Nachrichten, 233-234 (1), 55-76. doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.3.CO;2-I
Chabrowski, J. H. and Yan, S. (2002). On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity. Colloquium Mathematicum, 94 (1), 141-150. doi: 10.4064/cm94-1-10
Chabrowski, J. H. and Yang, J. (2001). On the Neumann problem for an elliptic system of equations involving the critical Sobolev exponent. Colloquium Mathematicum, 90 (1), 19-35. doi: 10.4064/cm90-1-2
Chabrowski, J. H., Watson, P. and Yang, J. (2001). On shape and multiplicity of solutions for a singularly perturbed Neuman problem. Annales Polonici Mathematici, 77 (2), 119-159.
Chabrowski, J. H. and Girao, P.M. (2001). On nonlinear Neumann problem and sharp weighted Sobolev inequalities.. Colloquium Mathematicum, 88 (2), 193-213. doi: 10.4064/cm88-2-3
Chabrowski, J. H. and Yang, Jianfu (2000). Multiple semiclassical solutions of the Schrodinger equation involving a critical Sobolev exponent. Portugaliae Mathematica, 57 (3), 273-284.
Chabrowski, J. H. and Yan, S. (1999). Concentration of solutions for nonlinear elliptic problem with nearly critical exponent. Topological Methods in Nonlinear Analysis, 13 (2), 199-233.
Chabrowski, Jan and Yang, Jianfu (1998). On Schrodinger Equation with Periodic Potential and Critical Sobolev Exponent. Topological Methods in Nonlinear Analysis, 12 (2), 245-261.
Chabrowski, J. and Yang, Jianfu (1997). Existence theorems for elliptic equations involving supercritical sobolev exponent. Advances in Differential Equations, 2 (2), 231-256.
Chabrowski, J. and Yang, Jianftj (1997). Nonnegative solutions for semilinear biharmonic equations in rn. Analysis (Germany), 17 (1), 35-60. doi: 10.1524/anly.1997.17.1.35
Cao, Daomin and Chabrowski, J. (1996). On the number of positive solutions for nonhomogeneous semilinear elliptic problem. Advances in Differential Equations, 1 (5), 753-772.
Chabrowski J. and Lions P.L. (1995). On multiple solutions for the nonhomogeneous p-Laplacian with a critical Sobolev exponent. Differential and Integral Equations, 8 (4), 705-716.
Chabrowski J. (1995). Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. Calculus of Variations and Partial Differential Equations, 3 (4), 493-512. doi: 10.1007/BF01187898
Chabrowski, Jan and Kewei, Zhang (1993). On variational approach to photometric stereo. Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 10 (4), 363-375. doi: 10.1016/S0294-1449(16)30206-2
Chabrowski J. (1992). On the existence of G-symmetric entire solutions for semilinear elliptic equations. Rendiconti del Circolo Matematico di Palermo, 41 (3), 413-440. doi: 10.1007/BF02848946
Chabrowski, J. H. and Thompson, H. B. (1988). Singular and quasi-bounded functions associated with the heat equation. Mathematische Zeitschrift, 199 (1), 81-98. doi: 10.1007/BF01160211
Chabrowski J.H. (1988). On Solvability of Boundary Value Problem for Elliptic Equations with Bitsadze-Samarskiĭ Condition. International Journal of Mathematics and Mathematical Sciences, 11 (1), 101-113. doi: 10.1155/S0161171288000158
Chabrowski J. (1988). On the existence of solutions of the Dirichlet problem for nonlinear elliptic equations. Rendiconti del Circolo Matematico di Palermo, 37 (1), 65-87. doi: 10.1007/BF02844268
Chabrowski J. (1984). On non-local problems for parabolic equations. Nagoya Mathematical Journal, 93, 109-131. doi: 10.1017/S0027763000020754
Chabrowski J. and Thompson H.B. (1983). On the boundary values of the solutions of linear elliptic equations. Bulletin of the Australian Mathematical Society, 27 (1), 1-30. doi: 10.1017/S0004972700011461
Chabrowski J. (1982). Representation Theorems for Parabolic Systems. Journal of the Australian Mathematical Society, 32 (2), 246-288. doi: 10.1017/S1446788700024587
Chabrowski J. and Vyborny R. (1982). Maximum principle for non-linear degenerate equations of the parabolic type. Bulletin of the Australian Mathematical Society, 25 (2), 251-263. doi: 10.1017/S0004972700005268
Chabrowski, J and Thompson, B (1981). On the Behavior Near the Boundary of Solutions of a Semi-Linear Partial-Differential Equation of Elliptic Type. Journal of the Australian Mathematical Society Series A-Pure Mathematics and Statistics, 31 (DEC), 405-414.