# Dr Graham Norton

Honorary Associate Professor

Honorary Associate Professor

School of Mathematics and Physics

+61 7 336 53129

## Personal page

### Publications

### Journal Articles

Norton, Graham H. (2019).

*On the annihilator ideal of an inverse form: addendum*. Applicable Algebra in Engineering Communication and Computing, 30 (6), 491-507. doi: 10.1007/s00200-019-00390-2
Norton, Graham H. (2017).

*On the annihilator ideal of an inverse form*. Applicable Algebra in Engineering, Communications and Computing, 28 (1), 31-78. doi: 10.1007/s00200-016-0295-6
Norton, Graham H. (2015).

*On sequences, rational functions and decomposition*. Applicable Algebra in Engineering, Communications and Computing, 26 (5), 427-463. doi: 10.1007/s00200-015-0256-5
Norton, Graham H. (2010).

*Minimal polynomial algorithms for finite sequences*. IEEE Transactions on Information Theory, 56 (9) 5550377, 4643-4645. doi: 10.1109/TIT.2010.2054150
Norton, G. H. and Salagean, A. (2003).

*Cyclic codes and minimal strong Gröbner bases over a principal ideal ring*. Finite Fields and Their Applications, 9 (2), 237-249. doi: 10.1016/S1071-5797(03)00003-0
Norton, Graham H. and Sǎlǎgean, Ana (2002).

*Gröbner bases and products of coefficient rings*. Bulletin of the Australian Mathematical Society, 65 (1), 145-152. doi: 10.1017/s0004972700020165
Norton, G. H. and Salagean, A. (2002).

*Strong Groebner Bases and Products of Coefficient Rings*. Bulletin of the Australian Mathematical Society, 65, 147-154.
Norton, G. H. and Salagean, A. (2002).

*Groebner Bases and Cyclic Codes Over a Finite Chain Ring*. Bulletin of the Australian Mathematical Society, 65, 147-154.
Norton, G. H. and Salagean, A (2002).

*Grbner bases and products of coefficient rings*. Australian Mathematical Society. Bulletin, 65 (1), 147-154.
Blackmore, T. and Norton, G. H. (2002).

*Lower Bounds on the State Complexity of Geometric Goppa Codes*. Designs Codes and Cryptography, 25 (1), 95-115. doi: 10.1023/A:1012512718264
Blackmore, T and Norton, GH (2002).

*Determining when the absolute state complexity of a Hermitian code achieves its DLP bound*. Siam Journal On Discrete Mathematics, 15 (1), 14-40. doi: 10.1137/S0895480100376435
Blackmore, Tim and Norton, Graham H. (2001).

*Matrix-product codes over Fq*. Applicable Algebra In Engineering Communication And Computing, 12 (6), 477-500. doi: 10.1007/PL00004226
Norton, G. H. and Salagean, A. (2001).

*Strong Grobner bases for polynomials over a principal ideal ring*. Bulletin of The Australian Mathematical Society, 64 (3), 505-528. doi: 10.1017/s0004972700019973
Blackmore, T. and Norton, G. H. (2001).

*On a family of abelian codes and their state complexities*. IEEE Transactions on Information Theory, 47 (1), 355-361. doi: 10.1109/18.904535