Materials are vital for modern technology. Our understanding and control of the physics of silicon enabled the digital revolution. But electron-electron interactions are not important for the physics of silicon. In many other materials quantum mechanical electron-electron interactions determine the properties of the materials. These quantum materials show amazing properties such as high temperature superconductivity and sometime have excitations that are very different from the properties of the vacuum [1]. If we could routinely design and control quantum materials it would revolutionise technologies from electricity distribution to computing. But currently we have very limited abilities to design quantum materials. A new class of materials, MOFs, may be the key to enabling the rational design of quantum materials. Several projects are available in this area using techniques varying from supercomputer calculations to pen and paper theory to help change this in collaboration with world leading synthetic chemists and experimental physicists.

[1] B. J. Powell, The expanding materials multiverse, Science 360, 1074 (2018)

Project members

Professor Ben Powell

Professor
School of Mathematics and Physics