Skip to menu Skip to content Skip to footer
The University of Queensland
  • Study
  • Research
  • Partners and community
  • About
School of Mathematics and Physics
  • Home
  • About
    • About
    • Our people
    • Equity, diversity and inclusion
    • News
    • Events
    • Alumni
  • Mathematics
    • Mathematics
    • Mathematics people
    • Mathematics courses
  • Physics
    • Physics
    • Physics people
    • Physics courses
  • Study
    • Study
    • Undergraduate
    • Honours
    • Postgraduate coursework
    • Higher degree by research
    • Careers and employability
  • Research
    • Research
    • Research centres
    • Industry engagement
    • Visiting fellowships
  • Outreach
    • Outreach
    • Pitch Drop experiment
    • Junior Physics Odyssey
    • Senior Mathematics Study Days
    • Queensland Mathematics Summer School
    • School seminars and colloquia
  • Current students
    • Current students
    • Course lists
    • Scholarships and prizes
    • Support for HDR candidates
  • Contact
    • Contact
    • Staff directory
  • Study
  • Research
  • Partners and community
  • About
  • UQ home
  • News
  • Events
  • Give
  • Contact
  • UQ home
  • News
  • Events
  • Give
  • Contact
School of Mathematics and Physics
  • Home
  • About
    • Our people
    • Equity, diversity and inclusion
    • News
    • Events
    • Alumni
  • Mathematics
    • Mathematics people
    • Mathematics courses
  • Physics
    • Physics people
    • Physics courses
  • Study
    • Undergraduate
    • Honours
    • Postgraduate coursework
    • Higher degree by research
    • Careers and employability
  • Research
    • Research centres
    • Industry engagement
    • Visiting fellowships
  • Outreach
    • Pitch Drop experiment
    • Junior Physics Odyssey
    • Senior Mathematics Study Days
    • Queensland Mathematics Summer School
    • School seminars and colloquia
  • Current students
    • Course lists
    • Scholarships and prizes
    • Support for HDR candidates
  • Contact
    • Staff directory

Dr Keith Matthews

Honorary Senior Lecturer
Mathematics
Honorary Senior Fellow
School of Mathematics and Physics
+61 7 336 53277
k.matthews@uq.edu.au

Personal Page

Dr Keith Matthews's personal page

Publications

Book Chapter (1)
Journal Articles (33)
Theses (2)

Book Chapter

Matthews, Keith R. (2010). Generalized 3x+1 mappings: Markov chains and ergodic theory. The ultimate challenge: The 3x+1 problem. (pp. 79-103) edited by Jeffrey C. Lagarias. Providence, RI, U.S.A.: American Mathematical Society.

Journal Articles

Matthews, Keith R. and Robertson, John P. (2021). On solving a binary quadratic Diophantine equation. Rocky Mountain Journal of Mathematics, 51 (4), 1369-1385. doi: 10.1216/rmj.2021.51.1369
Matthews, Keith R. , Robertson, John P. and Srinivasan, Anitha (2017). Extending Theorems of Serret and Pavone. Journal of Integer Sequences, 20 (10) 17.10.5, 1-11.
Matthews, Keith R., Robertson, John P. and Srinivasan, Anitha (2015). On fundamental solutions of binary quadratic form equations. Acta Arithmetica, 169 (3), 291-299. doi: 10.4064/aa169-3-4
Matthews, Keith R. (2014). Lagrange's Algorithm Revisited: Solving at2 + btu + cu2 = n in the case of negative discriminant. Journal of Integer Sequences, 17 (11).
Matthews, Keith R., Robertson, John P. and White, Jim (2013). On a diophantine equation of Andrej Dujella. Glasnik Matematicki, 48 (2), 265-289. doi: 10.3336/gm.48.2.04
Matthews, Keith R. (2012). On the optimal continued fraction expansion of a quadratic surd. Journal of the Australian Mathematical Society, 93 (1-2), 133-156. doi: 10.1017/S1446788712000596
Matthews, Keith R. and Robertson, John P. (2011). Period-length equality for the nearest integer and nearest square continued fraction expansions of a quadratic surd. Glasnik Matematicki, 46 (2), 269-282. doi: 10.3336/gm.46.2.01
Matthews, Keith R. and Robertson, John P. (2010). Purely periodic nearest square continued fractions. Journal of Combinatorics and Number Theory, 2 (3), 239-244.
Matthews, Keith, Robertson, John and White, Jim (2010). Midpoint criteria for solving Pell's equation using the nearest square continued fraction. Mathematics of Computation, 79 (269), 485-499. doi: 10.1090/S0025-5718-09-02286-8
Matthews, Keith R. (2009). Unisequences and nearest integer continued fraction midpoint criteria for Pell’s equation. Journal of Integer Sequences, 12 (6), Article 09.6.7.
Robertson, John P. and Matthews, Keith R. (2008). A continued fractions approach to a result of Feit. American Mathematical Monthly, 115 (4), 346-349. doi: 10.1080/00029890.2008.11920534
Matthews, Keith R., Robertson, John P. and White, Jim (2008). Corrigenda to “Calculation of the regulator of Q(√D) by use of the nearest integer continued fraction algorithm”. Mathematics of Computation, 78 (265), 615-616. doi: 10.1090/S0025-5718-08-02142-X
Jackson, Terrence and Matthews, Keith (2002). On Shanks' algorithm for computing the continued fraction of log b a. Journal of Integer Sequences, 5 (2.7), 1-9.
Matthews, K. (2002). The Diophantine equation ax2 + bxy + cy2 = N, D = b2 - 4ac > 0. Journal de Theorie des Nombres, 14 (1), 257-270. doi: 10.5802/jtnb.358
Matthews, K. (2002). Thue's theorem and the diophantine equation x2 - Dy2 = ±N. Mathematics of Computation, 71 (239), 1281-1286. doi: 10.1090/S0025-5718-01-01381-3
Matthews, K. R. (2000). The diophantine equation x2 - Dy2 = N, D > 0. Expositiones Mathematicae, 18, 323-331.
Havas, George, Majewski, Bohdan S. and Matthews, Keith R. (1999). Extended GCD and hermite normal form algorithms via lattice basis reduction (Addenda and errata). Experimental Mathematics, 8 (2), 205-205. doi: 10.1080/10586458.1999.10504399
Havas, George, Majewski, Bohdan S. and Matthews, Keith R. (1998). Extended GCD and hermite normal form algorithms via lattice basis reduction. Experimental Mathematics, 7 (2), 125-136. doi: 10.1080/10586458.1998.10504362
Matthews K.R. (1996). Minimal multipliers for consecutive Fibonacci numbers. Acta Arithmetica, 75 (3), 205-218. doi: 10.4064/aa-75-3-205-218
Matthews, K. (1992). Some Borel measures associated with the generalized Collatz mapping. Colloquium Mathematicum, 63 (2), 191-202. doi: 10.4064/cm-63-2-191-202
Matthews, Keith R. (1992). A rational canonical form algorithm. Mathematica Bohemica, 117 (3), 315-324. doi: 10.21136/mb.1992.126286
Buttsworth, R. and Matthews, K. (1990). On some Markov matrices arising from the generalized Collatz mapping. Acta Arithmetica, 55 (1), 43-57. doi: 10.4064/aa-55-1-43-57
Matthews, Keith (1988). Algorithm of the Bi_Month: Computing mth Roots. The College Mathematics Journal, 19 (2), 174. doi: 10.2307/2686184
Matthews, K.R and Leigh, G.M (1987). A generalization of the Syracuse algorithm in Fq[x]. Journal of Number Theory, 25 (3), 274-278. doi: 10.1016/0022-314X(87)90032-1
Matthews, K. and Watts, A. (1985). A markov approach to the generalized Syracuse algorithm. Acta Arithmetica, 45 (1), 29-42. doi: 10.4064/aa-45-1-29-42
Matthews, K. R. (1978). On the eulericity of a graph. Journal of Graph Theory, 2 (2), 143-148. doi: 10.1002/jgt.3190020207
Matthews K.R. (1977). An example from power residues of the critical problem of Crapo and Rota. Journal of Number Theory, 9 (2), 203-208. doi: 10.1016/0022-314X(77)90023-3
Matthews, K. (1976). A generalisation of Artin's conjecture for primitive roots. Acta Arithmetica, 29 (2), 113-146. doi: 10.4064/aa-29-2-113-146
Matthews, K. R. (1973). Hermitian forms and the large and small sieves. Journal of Number Theory, 5 (1), 16-23. doi: 10.1016/0022-314X(73)90054-1
Matthews, K. R. (1972). Bilinear form associated with large sieve. Journal of the London Mathematical Society-Second Series, 5 (OCT), 567-+.
Matthews, K. R. (1972). Inequality of Davenport and Halberstam. Journal of the London Mathematical Society-Second Series, 4 (MAY), 638-+.
Matthews K.R. and Walters R.F.C. (1970). Some properties of the continued fraction expansion of (m/n) e1/q. Mathematical Proceedings of the Cambridge Philosophical Society, 67 (1), 67-74. doi: 10.1017/S0305004100057108
Matthews, K. R. (1965). Polynomials which are near to k-th powers. Mathematical Proceedings of the Cambridge Philosophical Society, 61 (1), 1-5. doi: 10.1017/s0305004100038561

Theses

Matthews, Keith Robert (1974). An investigation of the Davenport-Halberstam inequality and a generalization of Artin's conjecture for primitive roots. PhD Thesis, School of Mathematics and Physics, The University of Queensland.
Matthews, Keith Robert. (1966). Waring's theorem for polynomials over a finite field. M.Sc Thesis, School of Physical Sciences, The University of Queensland.

Areas of research

Algebra and number theory
Pure mathematics
Australian Aboriginal Flag Torres Strait Islander Flag UQ acknowledges the Traditional Owners and their custodianship of the lands on which UQ is situated. — Reconciliation at UQ
  • Media

    • Media team contacts
    • Find a subject matter expert
    • UQ news
  • Working at UQ

    • Current staff
    • Jobs at UQ
    • Strategic plan
    • Staff support
    • IT support for staff
  • Current students

    • my.UQ
    • Programs and courses
    • Key dates
    • Student support
    • IT support for students
  • Library

    • Library
    • Locations and hours
    • Library services
    • Research tools
  • Contact

    • Contact UQ
    • Find a researcher
    • Faculties, schools, institutes and centres
    • Divisions and departments
    • Campuses, maps and transport
    • Media team contacts
    • Find a subject matter expert
    • UQ news
    • Current staff
    • Jobs at UQ
    • Strategic plan
    • Staff support
    • IT support for staff
    • my.UQ
    • Programs and courses
    • Key dates
    • Student support
    • IT support for students
    • Library
    • Locations and hours
    • Library services
    • Research tools
    • Contact UQ
    • Find a researcher
    • Faculties, schools, institutes and centres
    • Divisions and departments
    • Campuses, maps and transport
Web login
  • © The University of Queensland
  • ABN: 63 942 912 684
  • CRICOS: 00025B
  • TEQSA: PRV12080
  • Privacy and terms of use
  • Accessibility
  • Right to information
  • Feedback